Lake St. Clair Regional Monitoring Project

Inland Lake Sediment Sampling and Analysis Report

Prepared by:

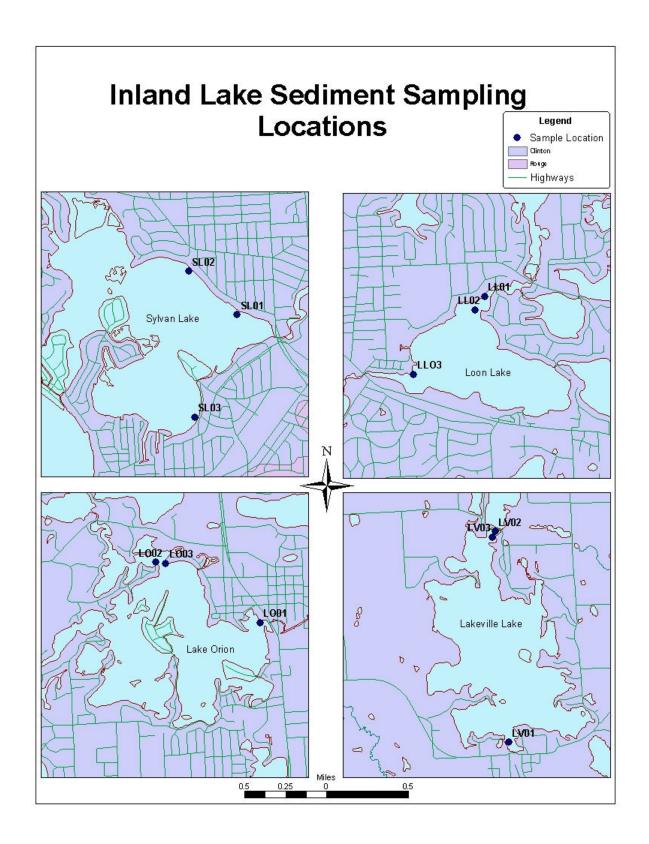
Macomb County Health Department 43525 Elizabeth Rd. Mt. Clemens, MI 48043

January 2005

Table of Contents

1.0	PROE 1.1	BLEM DEFINITION AND BACKGROUND	
2.0	SAMP 2.1 2.2	Core SamplingPonar sampling	4
3.0	RESU	LTS	7
4.0	DISCU 4.1 4.2 4.3 4.4	JSSION Lakeville Lake – IL01 Lake Orion – IL02 Loon Lake – IL03 Sylvan Lake – IL04.	8 9 9
5.0	CONC	CLUSIONS	21
6.0	REFE	RENCES	22
		List of Figures	
Figure Figure		Inland Lake Sampling Locations Data Summary Charts	2 14
		List of Tables	
Table Table		Inland Lake Sampling Locations Sediment Analytical Parameters	3 6
Tables Table Table Table Table Table Table Table	3a. 3b. 3c. 3d. 4.	ned in Appendix A Lakeville Lake Sediment Data Lake Orion Sediment Data Loon Lake Sediment Data Sylvan Lake Sediment Data Sediment Constituents Compared to Ecological Screening Leand Probable Effects Concentration (PEC) Toxicity Assay Results	evel (ESL)

APPENDICES


Appendix A	Lake Sediment Sample Analytical Data Summaries
Appendix B	RTI Laboratories Analytical Reports
Appendix C	ASci Corporation Environmental Testing Laboratory Report
Appendix D	Transcribed Field Notes and Sediment Core Logs

1.0 PROBLEM DEFINITION AND BACKGROUND

In response to water quality concerns and the recommendations listed in the Remedial Action Plans for the Clinton River and St. Clair River AOCs, and the Blue Ribbon Commission Report, Macomb County, Oakland County, and St. Clair County have constructed a work plan to develop a comprehensive assessment of water quality of the Lake St. Clair, St. Clair River and Clinton River Watersheds. The current project is part of a three-year comprehensive water quality monitoring effort to be conducted in Lake St. Clair, the Clinton River Watershed, and the St. Clair River Watershed (Belle, Black, and Pine River Watersheds). It incorporates the Macomb County Health Department's ongoing Lake St. Clair Assessment Project.

The overall goal of this sampling effort is to provide a baseline sediment quality evaluation for the selected inland lakes located in Oakland County (Figure 1). These four lakes are located in the headwaters of the Clinton River watershed, a major contributor to the pollution problems that have plagued Lake St. Clair. This effort comprises a small component of the larger Lake St. Clair Regional Water Quality Monitoring Project.

The Clinton River watershed consists of 760 square miles of industrial, urban, suburban and agricultural land, primarily in Oakland and Macomb Counties. Following the completion of the Clinton River Remedial Action Plan in 1988, the entire Clinton River watershed was included as an Area of Concern. According to the Clinton River Watershed Remedial and Preventive Action Plan Update (1998), the single greatest source of water quality problems in the Clinton River watershed and Lake St. Clair is storm water runoff and its associated pollutants.

Lake St. Clair Regional Monitoring Project Inland Lake Sediment Report

1.1 Task Description

Sediment samples were collected in sediment deposition zones in selected inland lakes in Oakland County (Table 1). These areas were selected based on known outfall locations, inlet/outlet locations, and accessibility. Core samples were collected using a Vibrocore sampler at 12 locations (3 in each lake) in accordance with the Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOPs).

Table 1. Inland Lake Sampling Locations

Designation Sample ID		Location	Date
IL01	LV	Lakeville Lake	January 22, 2004
IL02	LO	Lake Orion	December 22, 2003
IL03	LL	Loon Lake	December 15, 2003
IL04	SL	Sylvan Lake	December 13, 2003

2.0 **SAMPLING METHODS**

2.1 Core Sampling

Sediment samples were collected using a stainless steel OgeecheeTM Sand Corer with two-inch plastic CAB (cellulose acetate butyrate) core liners. The nose of the corer was slowly lowered into the water at each location and was then pushed into the sediment bottom using the hand-held Vibracore unit. Once the operator could no longer advance the core, the core was sealed at the top to maximize sample recovery, and the core was retrieved. Each core liner was capped at both ends to contain the core and eliminate contamination of the sample. A minimum of three cores were collected from each sample location. Based on visual estimates of the core samples, additional cores were collected until the total volume of sediment samples was sufficient for compositing and analysis.

Due to freezing weather, the sealed liners were taken to ECT's storage garage in Brighton for processing. Cores from their respective sample locations were composited using a stainless steel bowl and a stainless steel spoon. In areas where multiple layers of sedimentation were evident, each layer was composited separately. The sample material was then transferred by way of the stainless steel spoon to clean pre-labeled containers provided by the laboratory. The containers were filled to about 90% to allow additional homogenization at the laboratory, then placed in a cooler on ice for eventual transport to the laboratory. For each subsequent sample, the stainless steel bowl and utensils were cleaned and rinsed with nonionic detergent solution, deionized water, and site water prior to sampling at the new location.

The composite samples were delivered under chain-of-custody to the laboratory for analysis. Analysis of the sediment samples included chemical oxygen demand (COD), total organic carbon (TOC), oil and grease (FOG-HEM), total Lake St. Clair Regional Monitoring Project

Inland Lake Sediment Report

petroleum hydrocarbons (TPH), total Kjeldahl nitrogen, total phosphorus, ammonia-nitrogen, polychlorinated biphenyls (PCB), polynuclear aromatic hydrocarbons (PAH), pesticides, and metals.

2.2 Ponar Sampling

Because of the large sediment volume required for toxicity analysis, additional surface sediment samples were collected using a stainless steel ponar dredge. Several ponar samples were collected from each location until a sufficient volume was collected for subsequent analysis. Debris (such as rocks and plant material) occasionally interfered with the operation of the ponar, either causing the ponar to trigger early or inhibiting the device from completely closing. This is considered normal when using a ponar. The field notes reflect the number of times the ponar was deployed for each sample.

A subcontracted laboratory (RTI Laboratories, Inc., Livonia, Michigan) analyzed sediment samples for the parameters listed in Table 2.

After review of the chemical analytical results, the ponar samples from two locations on Lakeville Lake and two locations from Sylvan Lake were delivered to ASci Corporation, Environmental Testing Laboratory (Duluth, MN) for whole sediment toxicity analysis. The results from the other analytical parameters for the other two lakes did not warrant performing the toxicity assays.

Table 2. Sediment Analytical Parameters

Parameter	Abbreviation	Method	Container, Preservation	Holding Time
Chemical Oxygen Demand	COD	410.1	8-oz glass, 4°C	28 days
Total Organic Carbon	TOC	Walkley- Black	8-oz glass, 4°C	28 days
Oil and Grease	OGR	9071	8-oz glass, 4°C	14 days
Total Petroleum Hydrocarbons	TPH	418.1	8-oz glass, 4°C	28 days
Total Kjeldahl Nitrogen as N	TKN	351.2	8-oz glass, 4°C	28 days
Total Phosphorus as P	PHOS_T	365.2	8-oz glass, 4°C	28 days
Ammonia as N	NH3	350.1	8-oz glass, 4°C	28 days
Polychlorinated biphenyls	PCB	8082	4-oz glass, 4°C	14 days
Polynuclear Aromatic Hydrocarbons	PAH	8270C	8-oz glass, 4°C	14 days
Pesticides	Individual compounds designated separately	8081	4-oz glass, 4°C	14 days
Metals (arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, zinc)	Individual elements designated separately	6020, 7000A, 6010B	8-oz glass, 4°C	6 months
E. coli	ECOLI	9223	8-oz glass, Ambient	24 hours
Toxicity, whole sediment	TOX_W	Hyalella azteca, Chironomus tentans	2 liter plastic	

3.0 RESULTS

Laboratory results can be found in tabular form in Table 3a-d, which includes a table of results for each lake. The laboratory analytical reports and a summary of the results for duplicate samples are included in Appendix A.

Table 4 presents a comparison of a subset of the data to published sediment quality guidelines taken from three sources. For this comparison only those results that exceeded one or more of the sediment quality guidelines are presented.

The toxicity assay report from ASci Corporation, stated that "none of the ECT sediments (LV-01, LV-02, SL-02, and SL-03) caused statistically significant decreases in either organism survival or growth when compared to the West Bearskin reference control." The toxicity assay data are summarized in Table 5, and the ASci report is included in Appendix B.

Notes from the field personnel have been typed and can be found in Appendix C.

Highlights of the sediment sampling results can be summarized as follows:

- No PCBs were detected in any samples.
- No pesticides were detected in any samples.
- All three Loon Lake and two of the three Lakeville Lake sediment samples were highly enriched in organic matter.
- The results of the analysis of three duplicate sediment samples in some cases falls outside the acceptance criteria for relative percent difference of 20%.

Lake St. Clair Regional Monitoring Project Inland Lake Sediment Report

2/3/2005

4.0 DISCUSSION

The results of the sediment sampling of the inland lakes were compared to both the Environmental Protection Agency (EPA) Region 5 Resource Conservation and Recovery Act (RCRA) Ecological Screening Levels (ESL) and consensus-based Probable Effects Concentrations (PEC) developed by MacDonald, et al. (2000). Figure 2 presents a summary of the sediment results and compares them to the ESLs. Table 4 lists the highest concentrations detected for these compounds and the location from which the sample was taken.

The EPA ESLs are conservative screening criteria. If concentrations of constituents identified in sediments exceed these values, the constituents should be evaluated further. Conversely, if concentrations of constituents in sediment are below these values, then they are presumed to not present a potential ecological risk. The PEC values, in contrast, represent an upper bound on screening criteria. Constituent concentrations in sediment above these values are thought to likely have an adverse effect on potential ecological receptors and warrant further investigation. In instances where no ESL or PEC value has been derived, an Apparent Effect Threshold (AET) value (Buchman, 1999) was used to provide a point of comparison. The AET values were prepared specifically for sediments of Puget Sound, Washington, and are therefore not strictly applicable to the samples collected for this work.

The sediment results will also be compared with results reported in the 2002 Lake St. Clair Water Quality Assessment report published by the Macomb County Health Department. This report summarizes sediment quality as reflected in samples collected at locations within the Clinton River watershed and in near-shore areas of Lake St. Clair.

Lake St. Clair Regional Monitoring Project Inland Lake Sediment Report

2/3/2005

4.1 Lakeville Lake – IL01

On January 22, 2004, field crews mobilized to Lakeville Lake. Since the lake was completely covered with ice, mobilization at this time was made possible by employing the assistance of an airboat and operator. In order to collect samples, an auger was used to get through the ice. The sampling procedures described above were followed.

4.1.1 PAHs

In the sample from location LV01, near the lake outlet, five PAHs were detected, four of which (chrysene, fluoranthene, naphthalene and pyrene) were present at concentrations above the ESLs. However, none of these were above the PEC value.

4.1.2 Trace Metals

Several trace metals were present at elevated concentrations, particularly in the sample from LV02 and to a lesser extent at LV03. While the levels are elevated and in some cases exceed the ESL, the concentrations are in many cases comparable to the statewide default background soil values established by the Michigan Department of Environmental Quality. While this comparison of sediment concentrations with soils may not be strictly appropriate, it does provide an additional frame of reference for the trace metal concentrations observed.

4.1.3 Other Parameters

With the exception of *E. coli*, present at very low levels, many of the other parameters analyzed are elevated in samples LV02 and LV03, reflecting the very high organic matter content at these locations. The oil and grease concentrations, as high as 620 mg/kg, may be indicative of stormwater or other discharges and also include some naturally occurring constituents of the sediment organic matter.

4.1.4 Comparison with Other Sediment Assessment Results

The Macomb County Health Department prepared a comprehensive evaluation of the water quality of the Clinton River Watershed and its potential impact on Lake St. Clair (MCHD 2002). The PAH and oil and grease values found in Lakeville Lake are roughly the same order of magnitude of the values found in the Clinton River Watershed samples and near-shore samples collected from Lake St. Clair. Arsenic values, while generally on the same order of magnitude, were somewhat higher in Lakeville Lake than the nearshore Lake St. Clair sediment samples or the watershed sediment samples. Other trace metals were roughly comparable to the MCHD study results. COD, TOC, TKN and NH3 were generally elevated in Lakeville Lake relative to the Lake St. Clair results.

4.2 Lake Orion – IL02

On December 22, 2003, field crews mobilized to Lake Orion. The bays and coves of the lake were frozen and inaccessible for sampling. However, samples were collected at the opening of the inlet cove and at the outlet.

4.2.1 PAHs

No PAHs were detected in Lake Orion samples.

4.2.2 Trace Metals

No trace metals were detected at concentrations exceeding their respective ESLs.

4.2.3 Other Parameters

In contrast with the sediments from Lakeville Lake, Lake Orion sediments were very low in organic matter, the nutrient parameters, and oil and grease.

4.2.4 Comparison with Other Sediment Assessment Results

The Macomb County Health Department 2002 Lake St. Clair Assessment

identified trace levels of several pesticides, PCBs and PAHs, all of which were absent in the Lake Orion samples. Other parameters, including trace metals, nutrients and oil and grease, were generally lower than concentrations identified in the Lake St. Clair Assessment.

4.3 Loon Lake – IL03

On December 15, 2003, field crews mobilized to Loon Lake. The perimeter of the lake was frozen with approximately $\frac{1}{2}$ - 2" of ice. All sample locations were accessible with the boat.

4.3.1 PAHs

No PAHs were detected in Loon Lake sediment samples. The practical quantitation limits were slightly elevated due to interference caused by the very high level of organic carbon in the samples.

4.3.2 Trace Metals

In the sample from LL01, arsenic was detected at a concentration of 14,100 μ g/kg, exceeding the ESL of 9,790 μ g/kg. Arsenic is well known to be present in unusually high concentrations in soils, groundwater and parent material in Oakland County and southeast Michigan in general, so concentrations in the 10,000-20,000 μ g/kg range in uncontaminated soils are commonplace. Barium was detected in two samples exceeding the surrogate AET value of 48,000 μ g/kg. However, barium in sediments is typically in the form of barium sulfate (barite) (Agency for Toxic Substances and Disease Registry [ATSDR] 1992). This form is extremely insoluble and essentially non-toxic to humans (ATSDR 1992). No other trace metals were detected at concentrations above the ESL.

4.3.3 Other Parameters

As was observed in the samples from Lakeville Lake, many of the other parameters analyzed (NH3-N, TKN, TOC, COD) are elevated in each of the Loon

Lake samples, reflecting the very high organic matter content at these locations. The oil and grease concentrations (hexane extractable material) were as high as 1,400 mg/kg, very likely including naturally occurring constituents of the sediment

organic matter.

Comparison with Other Sediment Assessment Results

The Macomb County Health Department 2002 Lake St. Clair Assessment identified trace levels of several pesticides, PCBs and PAHs, all of which were absent in the Loon Lake samples. Arsenic was generally elevated in Loon Lake relative to the Lake St. Clair Assessment results. Other trace metal concentrations in Loon Lake sediments were generally lower than the sediments collected in the Lake St. Clair study. However, nutrients, TOC and COD were generally higher in Loon Lake sediments than those collected in the Lake St.

Clair investigation.

4.4 Sylvan Lake – IL04

Field crews mobilized to Sylvan Lake on December 13, 2003. The lake surface in the vicinity of the boat launch was frozen to approximately 15 feet from shore.

An alternative launch was located downstream of the lake.

4.4.1 PAHs

Ten PAHs were detected in the sample from SL03 at concentrations exceeding one or more of the sediment quality guidelines (Table 4). The source of these contaminants is likely a localized release of petroleum product such as diesel fuel, gasoline, or motor oil. Trace metals levels in the PAH-impacted sample are relatively low, arguing against used oil (which typically contains elevated metals

levels) as a potential source.

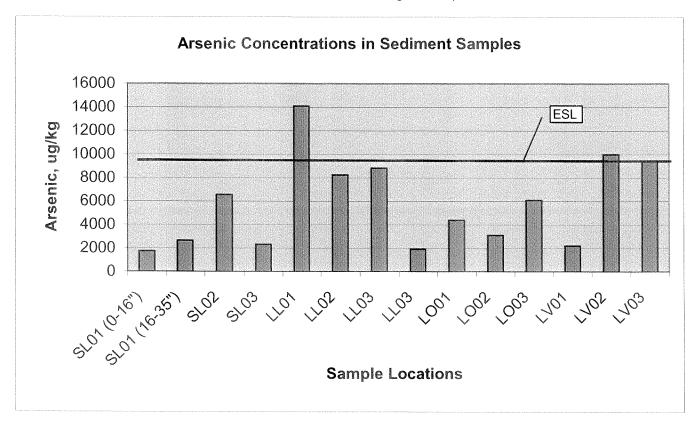
4.4.2 Trace Metals

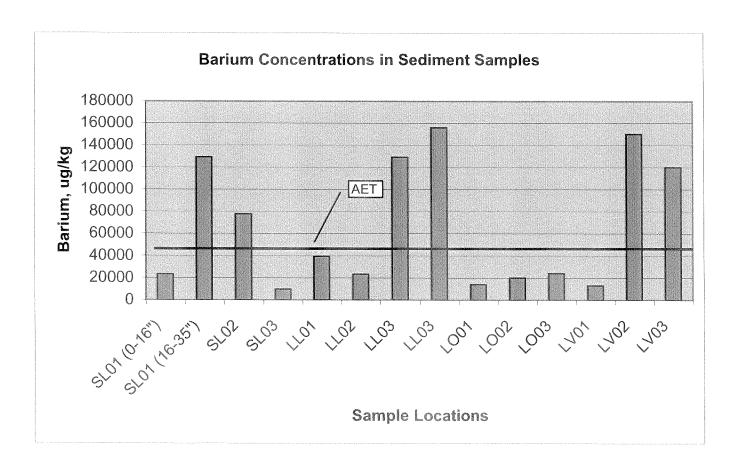
Several trace metals were present at elevated concentrations in the sample from

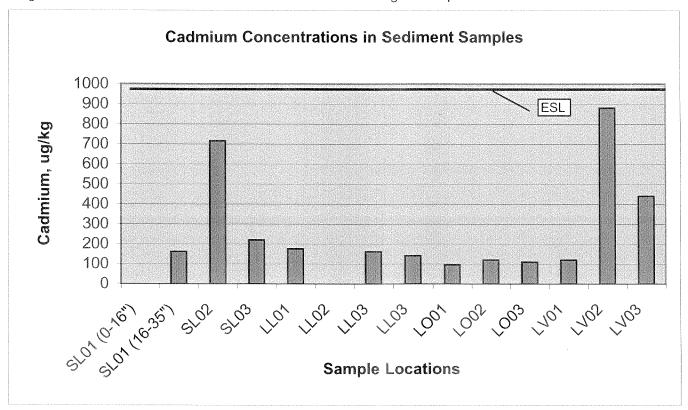
Lake St. Clair Regional Monitoring Project Inland Lake Sediment Report

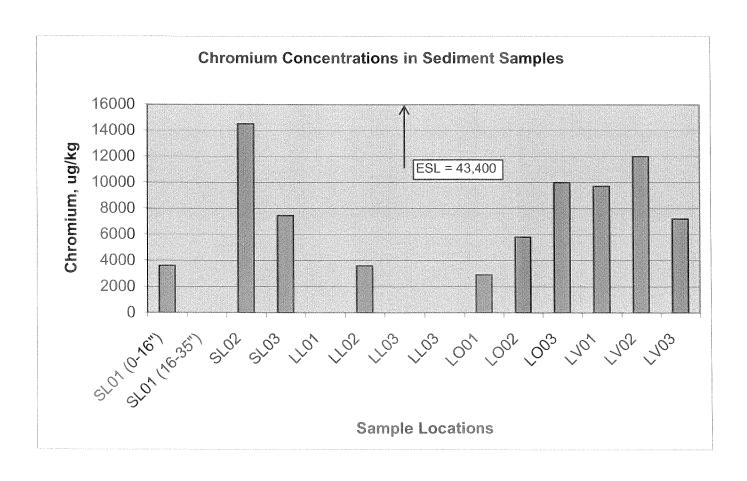
2/3/2005

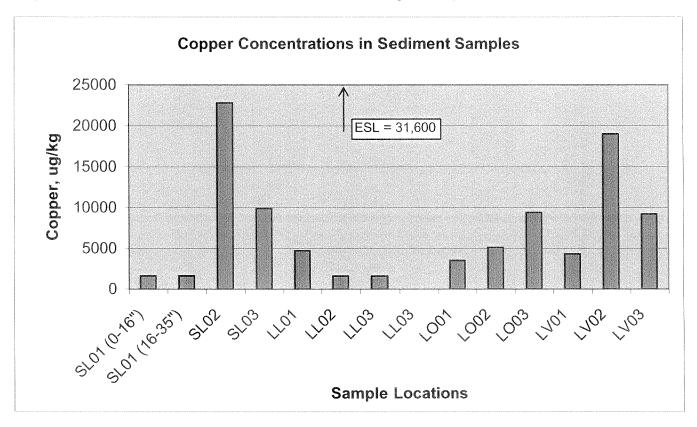
12

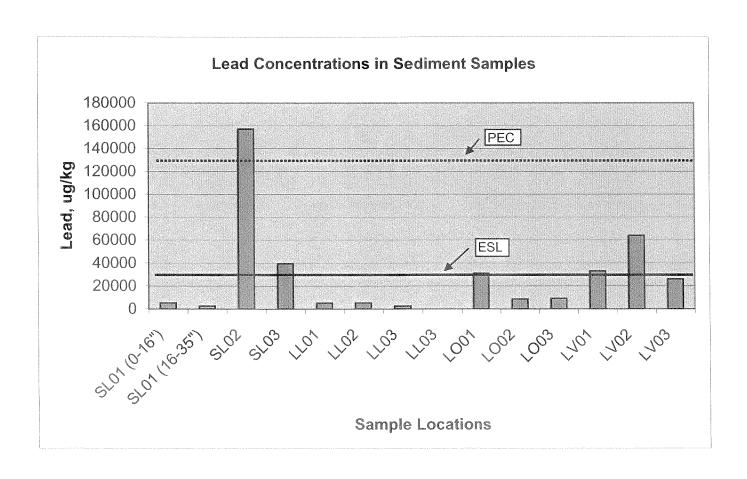

SL02 and to a lesser extent at SL03. While the levels are elevated and in some cases exceed the ESL, and PEC values, the concentrations are in many cases comparable to the statewide default background soil values established by the Michigan Department of Environmental Quality. While this comparison of sediment concentrations with soils may not be strictly appropriate, it does provide an additional frame of reference for the trace metal concentrations observed.

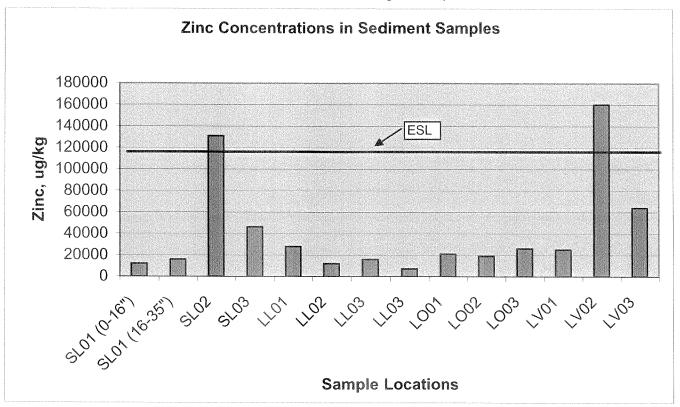

4.4.3 Other Parameters

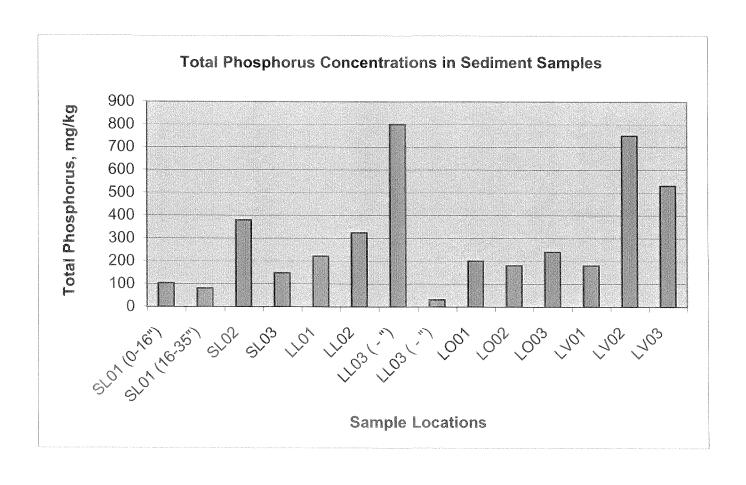

Most notable among the other parameters measured is the elevated oil and grease result (2,500 mg/kg) for the sample from SL02. This is a contradictory result in a sense, since it is in the sample from SL03 that the PAHs were detected, and thus where one might expect the oil and grease result to be high. As was mentioned earlier, the oil and grease method will include naturally occurring organic material, and the sample from SL02 is higher in TOC than the other Sylvan Lake samples. Nutrient data are roughly what would be expected based on the TOC content of the samples.

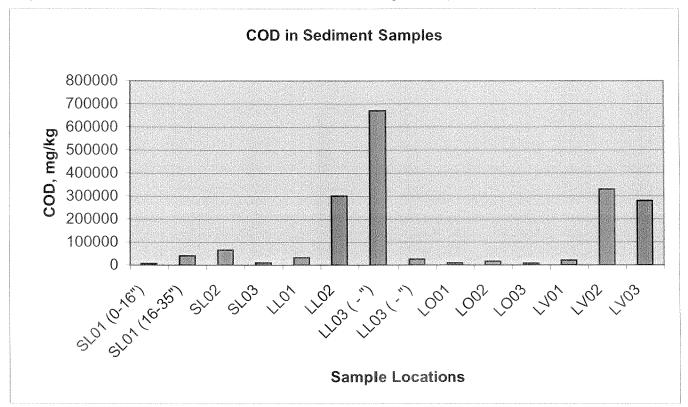

4.4.4 Comparison with Other Sediment Assessment Results

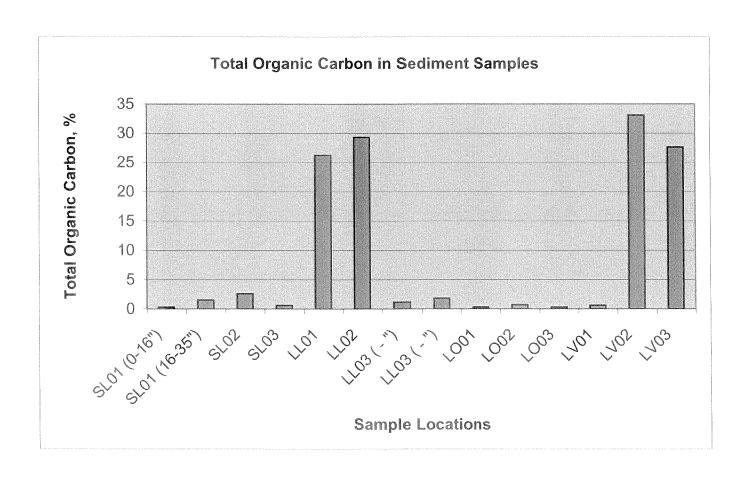

The PAHs identified in SL03 are similar both in terms of constituents identified and the levels at which they were measured to samples collected from near-shore areas of Lake St. Clair. Trace metals in Sylvan Lake are generally lower (with some exceptions) than samples collected during the Lake St. Clair study. In addition, other parameters, such as nutrients, COD and oil and grease were generally the same order of magnitude as in sediment samples from the Lake St. Clair study.

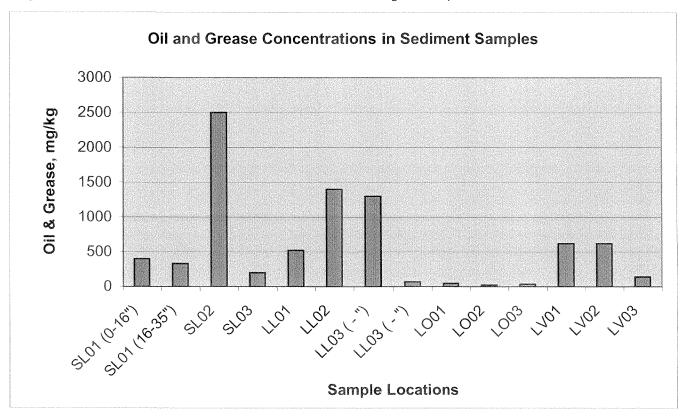


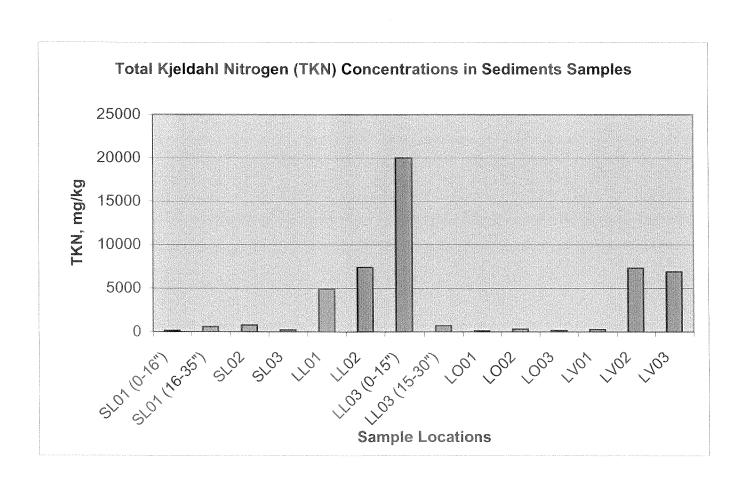


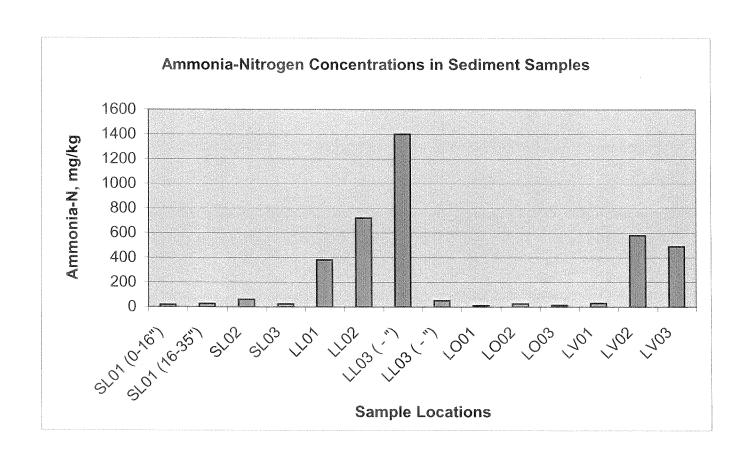








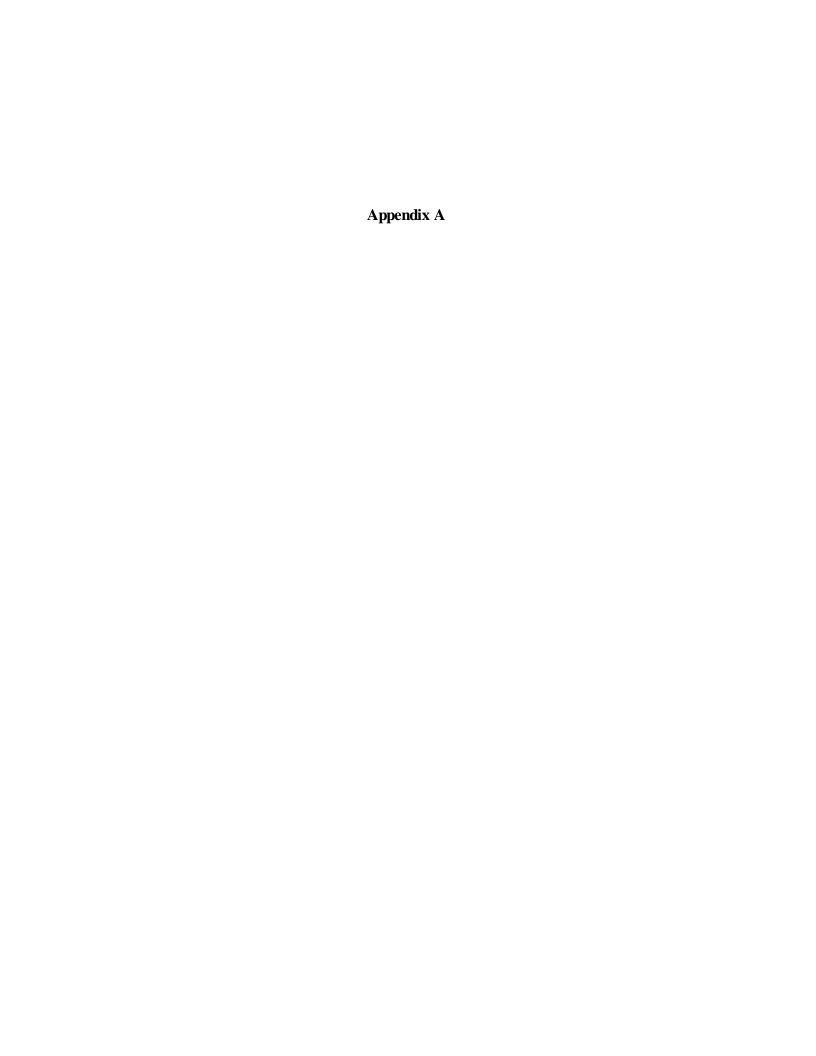




5.0 CONCLUSIONS

- The results of this study establish a baseline for sediment quality in four inland lakes of Oakland County.
- Although samples from Lakeville Lake and Sylvan Lake contained parameters of interest at concentrations that exceed some commonly used sediment quality criteria, the chemical composition of sediment samples does not reflect a serious negative impact of stormwater runoff or any other contaminant source.
- Among the four lakes, Lake Orion had the lowest overall results for nearly every parameter.
- Toxicity assay results for Lakeville Lake and Sylvan Lake samples showed no significant decreases in either organism survival or growth.
- The results are in no sense surprising in view of the land uses surrounding these lakes and what is known about potential stormwater impacts. With the exception of periodic or routine monitoring activities, no additional sampling is recommended at this time.

6.0 REFERENCES


ATSDR. 1992. Toxicological Profile for Barium and Compounds. U.S. Public Health Service. June. Accessed at http://www.atsdr.cdc.gov/toxprofiles/tp24.html

Buchman, M. F., 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 12 pages. Accessed at http://response.restoration.noaa.gov/cpr/sediment/squirt.pdf

MacDonald, D. D., Ingersoll, C. G., and Berger, T. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C., G., and Field, L. J. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 22:624-638.

2002 Lake St. Clair Water Quality Assessment. Macomb County Health Department Environmental Health Services Division.

Lake St. Clair Regional Monitoring Project

Table 3a. Lake Sediment Data

Lakeville Lake (IL01), collected 1/22/04

Sample ID	LV0140122-601	LV0240122-602	LV0340122-603
Sample Location	LV01	LV02	LV03
PAĤs, μg/kg		I	
Acenaphthene	< 320	< 780	< 690
Acenaphthylene	< 320	< 780	< 690
Anthracene	< 320	< 780	< 690
Benzo(a)anthracene	< 320	< 780	< 690
Benzo(a)pyrene	< 320	< 780	< 690
Benzo(b)fluoranthene	370	< 780	< 690
Benzo(g,h,i)perylene	< 320	< 780	< 690
Benzo(k)fluoranthene	< 320	< 780	< 690
Chrysene	330	< 780	< 690
Dibenzo(a,h)anthracene	< 320	< 780	< 690
Fluoranthene	850	< 780	< 690
Fluorene	< 320	< 780	< 690
Indeno(1,2,3-cd)pyrene	< 320	< 780	< 690
2-Methylnaphthalene	< 320	< 780	< 690
Naphthalene	< 320	< 780	< 690
Phenanthrene	410	< 780	< 690
Pyrene	600	< 780	< 690
PCB, μg/kg			
Aroclor 1016	< 130	< 310	< 280
Aroclor 1221	< 130	< 310	< 280
Aroclor 1232	< 130	< 310	< 280
Aroclor 1242	< 130	< 310	< 280
Aroclor 1248	< 130	< 310	< 280
Aroclor 1254	< 130	< 310	< 280
Aroclor 1260	< 130	< 310	< 280
Chlorinated Pesticides, µg/kg			
Aldrin	< 13	< 31	< 28
Dieldrin	< 13	< 31	< 28
Chlordane(Total)	< 63	< 160	< 140
4,4'-DDT	< 13	< 31	< 28
4,4'-DDE	< 13	< 31	< 28
4,4'-DDD	< 13	< 31	< 28
Endosulfan I	< 13	< 31	< 28
Endosulfan II	< 13	< 31	< 28
alpha-BHC	< 13	< 31	< 28
beta-BHC	< 13	< 31	< 28
gamma-BHC (Lindane)	< 13	< 31	< 28
delta-BHC	< 13	< 31	< 28
Endosulfan sulfate	< 13	< 31	< 28
Endrin	< 13	< 31	< 28
Endrin aldehyde	< 13	< 31	< 28
Heptachlor	< 13	< 31	< 28
Heptachlor epoxide	< 13	< 31	< 28
Methoxychlor	< 13	< 31	< 28
Toxaphene	< 630	< 1600	< 1400

Table 3a. Lake Sediment Data

Total Kjeldahl Nitrogen (TKN), mg/kg

Ammonia-Nitrogen, mg/kg

E. coli, CFU/g

Lakeville Lake (IL01), collected 1/22/04

7300

580

3

6900

490

2

Sample ID	LV0140122-601	LV0240122-602	LV0340122-603
Sample Location	LV01	LV02	LV03
ICP Metals, µg/kg			
Arsenic	2200	10000	9400
Barium	13000	150000	120000
Cadmium	120	880	440
Chromium	9700	12000	7200
Copper	4300	19000	9200
Lead	33000	64000	26000
Selenium	< 630	< 1600	<1400
Silver	< 630	< 1600	< 1400
Zinc	25000	160000	64000
Mercury	< 130	< 310	< 280
Total Phosphorus, mg/kg	180	750	530
COD, mg/kg	21000	330000	280000
Total Organic Carbon, TOC, %	0.6	33.1	27.6
Oil & Grease (FOG-HEM), mg/kg	620	620	140
Oil & Grease (FOG), mg/kg	350	280	< 2.8

Note: the relative percent difference criteria for the following constituents were exceeded: Arsenic, Chromium, Lead, Total Phosphorus, Oil & Grease (FOG-HEM) and Ammonia-Nitrogen. This may be due to either natural sediment heterogeneity, or field or laboratory operations. This variability indicates that the results for these parameters may not be viewed as "precise" but rather approximate.

280

31

2

Lake St. Clair Regional Monitoring Project

Table 3b. Lake Sediment Data

Lake Orion (IL02), collected 12/2/03

Sample ID	IL023122S01	IL023122S02	IL023122S03
Sample Location	LO01	LO02	LO03
PAHs, μg/kg	±		· · · · · · · · · · · · · · · · · · ·
Acenaphthene	< 290	< 290	< 280
Acenaphthylene	< 290	< 290	< 280
Anthracene	< 290	< 290	< 280
Benzo(a)anthracene	< 290	< 290	< 280
Benzo(a)pyrene	< 290	< 290	< 280
Benzo(b)fluoranthene	< 290	< 290	< 280
Benzo(g,h,i)perylene	< 290	< 290	< 280
Benzo(k)fluoranthene	< 290	< 290	< 280
Chrysene	< 290	< 290	< 280
Dibenzo(a,h)anthracene	< 290	< 290	< 280
Fluoranthene	< 290	< 290	< 280
Fluorene	< 290	< 290	< 280
Indeno(1,2,3-cd)pyrene	< 290	< 290	< 280
2-Methylnaphthalene	< 290	< 290	< 280
Naphthalene	< 290	< 290	< 280
Phenanthrene	< 290	< 290	< 280
Pyrene	< 290	< 290	< 280
PCB, µg/kg		1	
Aroclor 1016	< 120	< 120	< 110
Aroclor 1221	< 120	< 120	< 110
Aroclor 1232	< 120	< 120	< 110
Aroclor 1242	< 120	< 120	< 110
Aroclor 1248	< 120	< 120	< 110
Aroclor 1254	< 120	< 120	< 110
Aroclor 1260	< 120	< 120	< 110
Chlorinated Pesticides, µg/kg		1	
Aldrin	< 12	< 12	< 11
Dieldrin	< 12	< 12	< 11
Chlordane(Total)	< 59	< 59	< 57
4,4'-DDT	< 12	< 12	< 11
4,4'-DDE	< 12	< 12	< 11
4,4'-DDD	< 12	< 12	< 11
Endosulfan I	< 12	< 12	< 11
Endosulfan II	< 12	< 12	< 11
alpha-BHC	< 12	< 12	< 11
beta-BHC	< 12	< 12	< 11
gamma-BHC (Lindane)	< 12	< 12	< 11
delta-BHC	< 12	< 12	< 11
Endosulfan sulfate	< 12	< 12	< 11
Endrin	< 12	< 12	< 11
Endrin aldehyde	< 12	< 12	< 11
Heptachlor	< 12	< 12	< 11
Heptachlor epoxide	< 12	< 12	< 11
Methoxychlor	< 12	< 12	< 11
Toxaphene	< 590	< 590	< 570
голариене		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 \ > 3/0

Table 3b. Lake Sediment Data

Lake Orion (IL02), collected 12/2/03

Sample ID	IL023122S01	IL023122S02	IL023122S03
Sample Location	LO01	LO02	LO03
ICP Metals, µg/kg			
Arsenic	4400	3100	6100
Barium	14000	20000	24000
Cadmium	96	120	110
Chromium	2900	5800	10000
Copper	3500	5100	9400
Lead	31000	8500	9100
Selenium	< 590	< 590	< 570
Silver	< 590	< 590	< 570
Zinc	21000	19000	26000
Mercury	< 120	< 120	< 110
Total Phosphorus, mg/kg	200	180	240
COD, mg/kg	9300	16000	7500
Total Organic Carbon, TOC, %	0.3	0.7	0.3
O'LO C (EOCHELO //	1	2.4	2.4

Total Phosphorus, mg/kg	200	180	240
COD, mg/kg	9300	16000	7500
Total Organic Carbon, TOC, %	0.3	0.7	0.3
Oil & Grease (FOG-HEM), mg/kg	47	24	34
Oil & Grease (FOG), mg/kg	< 1.2	< 1.2	< 1.1
Total Kjeldahl Nitrogen (TKN), mg/kg	116	313	157
Ammonia-Nitrogen, mg/kg	12	26	14
E. coli, CFU/g	na	na	na

Note: the relative percent difference criteria for the following constituents were exceeded:
Barium, Cadmium, Chromium, Copper, Lead, Total Phosphorus, COD, and Oil & Grease (FOG-HEM).
This may be due to either natural sediment heterogeneity, or field or laboratory operations. This variability indicates that the results for these parameters may not be viewed as "precise" but rather approximate.

Lake St. Clair Regional Monitoring Project

Table 3c.
Lake Sediment Data

Loon Lake (IL03), collected 12/15/03

Sample ID	IL0331215S01	IL0331215S02	IL0331215S03	IL0331215S04
Sample Location	LL01	LL02	LL03 (-")	LL03 (-")
PAHs, μg/kg	LLUI	LLUZ	LL03 (-)	LL03 (-)
Acenaphthene	< 740	< 740	< 1500	< 480
Acenaphthylene	< 740	< 740	< 1500	< 480
Anthracene	< 740	< 740	< 1500	< 480
Benzo(a)anthracene	< 740	< 740	< 1500	< 480
Benzo(a)pyrene	< 740	< 740		
Benzo(b)fluoranthene	< 740	< 740	< 1500 < 1500	< 480
Benzo(g,h,i)perylene		< 740	 	< 480
	< 740		< 1500	< 480
Benzo(k)fluoranthene	< 740	< 740	< 1500	< 480
Chrysene	< 740	< 740	< 1500	< 480
Dibenzo(a,h)anthracene	< 740	< 740	< 1500	< 480
Fluoranthene	< 740	< 740	< 1500	< 480
Fluorene	< 740	< 740	< 1500	< 480
Indeno(1,2,3-cd)pyrene	< 740	< 740	< 1500	< 480
2-Methylnaphthalene	< 740	< 740	< 1500	< 480
Naphthalene	< 740	< 740	< 1500	< 480
Phenanthrene	< 740	< 740	< 1500	< 480
Pyrene	< 740	< 740	< 1500	< 480
PCB, μg/kg			-	
Aroclor 1016	< 150	< 150	< 290	< 96
Aroclor 1221	< 150	< 150	< 290	< 96
Aroclor 1232	< 150	< 150	< 290	< 96
Aroclor 1242	< 150	< 150	< 290	< 96
Aroclor 1248	< 150	< 150	< 290	< 96
Aroclor 1254	< 150	< 150	< 290	< 96
Aroclor 1260	< 150	< 150	< 290	< 96
Chlorinated Pesticides, µg/kg				
Aldrin	< 15	< 15	< 29	< 9.6
Dieldrin	< 15	< 15	< 29	< 9.6
Chlordane(Total)	< 74	< 74	< 150	< 48
4,4'-DDT	< 15	< 15	< 29	< 9.6
4,4'-DDE	< 15	< 15	< 29	< 9.6
4,4'-DDD	< 15	< 15	< 29	< 9.6
Endosulfan I	< 15	< 15	< 29	< 9.6
Endosulfan II	< 15	< 15	< 29	< 9.6
alpha-BHC	< 15	< 15	< 29	< 9.6
beta-BHC	< 15	< 15	< 29	< 9.6
gamma-BHC (Lindane)	< 15	< 15	< 29	< 9.6
delta-BHC	< 15	< 15	< 29	< 9.6
Endosulfan sulfate	< 15	< 15	< 29	< 9.6
Endrin	< 15	< 15	< 29	< 9.6
Endrin aldehyde	< 15	< 15	< 29	< 9.6
Heptachlor	< 15	< 15	< 29	< 9.6
Heptachlor epoxide	< 15	< 15	< 29	< 9.6
Methoxychlor	< 15	< 15	< 29	< 9.6
Toxaphene	< 740	< 740	< 2900	< 960

Table 3c.
Lake Sediment Data

Loon Lake (IL03), collected 12/15/03

Sample ID	IL0331215S01	1L0331215S02	IL0331215S03	IL0331215S04
Sample Location	LL01	LL02	LL03 (- ")	LL03 (- ")
ICP Metals, μg/kg				
Arsenic	14100	8240	8820	1920
Barium	39400	42600	151000	156000
Cadmium	176	221	447	142
Chromium	< 7350	< 7350	< 14700	< 4810
Copper	4710	7940	12900	< 1920
Lead	5000	10000	19400	< 1920
Selenium	< 1470	< 1470	< 2940	< 962
Silver	< 1470	< 1470	< 2940	< 962
Zinc	27900	32900	43500	7120
Mercury	< 290	< 290	< 590	< 190

Total Phosphorus, mg/kg	221	324	800	30.8
COD, mg/kg	32000	300000	670000	25000
Total Organic Carbon, TOC, %	26.2	29.3	115	1.8
Oil & Grease (FOG-HEM), mg/kg	520	1400	1300	70
Oil & Grease (FOG), mg/kg	20	160	230	< 1.0
Total Kjeldahl Nitrogen (TKN), mg/kg	4900	7400	20000	700
Ammonia-Nitrogen, mg/kg	380	720	1400	52
E. coli, CFU/g	na	na	na	na

Lake St. Clair Regional Monitoring Project

Table 3d. Lake Sediment Data

Sylvan Lake (IL04), collected 12/13/03

Sample ID	IL0431213S01	IL0431213S02	IL0431213S03	IL0431213S04
Sample Location	SL01 (0-16")	SL01 (16-35")	SL02	SL03
PAHs, µg/kg		<u> </u>		1
Acenaphthene	< 290	< 370	< 370	< 300
Acenaphthylene	< 290	< 370	< 370	< 300
Anthracene	< 290	< 370	< 370	< 300
Benzo(a)anthracene	< 290	< 370	< 370	800
Benzo(a)pyrene	< 290	< 370	< 370	690
Benzo(b)fluoranthene	< 290	< 370	< 370	840
Benzo(g,h,i)perylene	< 290	< 370	< 370	630
Benzo(k)fluoranthene	< 290	< 370	< 370	770
Chrysene	< 290	< 370	< 370	1400
Dibenzo(a,h)anthracene	< 290	< 370	< 370	< 300
Fluoranthene	< 290	< 370	< 370	2900
Fluorene	< 290	< 370	< 370	< 300
Indeno(1,2,3-cd)pyrene	< 290	< 370	< 370	610
2-Methylnaphthalene	< 290	< 370	< 370	< 300
Naphthalene	< 290	< 370	< 370	< 300
Phenanthrene	< 290	< 370	< 370	910
Pyrene	< 290	< 370	< 370	2200
PCB, µg/kg				
Aroclor 1016	< 58	< 74	< 75	< 61
Aroclor 1221	< 58	< 74	< 75	< 61
Aroclor 1232	< 58	< 74	< 75	< 61
Aroclor 1242	< 58	< 74	< 75	< 61
Aroclor 1248	< 58	< 74	< 75	< 61
Aroclor 1254	< 58	< 74	< 75	< 61
Aroclor 1260	< 58	< 74	< 75	< 61
Chlorinated Pesticides, µg/kg				
Aldrin	< 5.8	< 7.4	< 7.5	< 6.1
Dieldrin	< 5.8	< 7.4	< 7.5	< 6.1
Chlordane(Total)	< 29	< 37	< 37	< 30
4,4'-DDT	< 5.8	< 7.4	< 7.5	< 6.1
4,4'-DDE	< 5.8	< 7.4	< 7.5	< 6.1
4,4'-DDD	< 5.8	< 7.4	< 7.5	< 6.1
Endosulfan I	< 5.8	< 7.4	< 7.5	< 6.1
Endosulfan II	< 5.8	< 7.4	< 7.5	< 6.1
alpha-BHC	< 5.8	< 7.4	< 7.5	< 6.1
beta-BHC	< 5.8	< 7.4	< 7.5	< 6.1
gamma-BHC (Lindane)	< 5.8	< 7.4	< 7.5	< 6.1
delta-BHC	< 5.8	< 7.4	< 7.5	< 6.1
Endosulfan sulfate	< 5.8	< 7.4	< 7.5	< 6.1
Endrin	< 5.8	< 7.4	< 7.5	< 6.1
Endrin aldehyde	< 5.8	< 7.4	< 7.5	< 6.1
Heptachlor	< 5.8	< 7.4	< 7.5	< 6.1
Heptachlor epoxide	< 5.8	< 7.4	< 7.5	< 6.1
Methoxychlor	< 5.8	< 7.4	< 7.5	< 6.1
Toxaphene	< 290	< 370	< 370	< 300

Table 3d. Lake Sediment Data

Sylvan Lake (IL04), collected 12/13/03

Sample ID	IL0431213S01	IL0431213S02	IL0431213S03	IL0431213S04
Sample Location	SL01 (0-16")	SL01 (16-35")	SL02	SL03
ICP Metals, μg/kg				
Arsenic	1740	2650	6570	2320
Barium	23300	129000	77600	9760
Cadmium	< 58.1	162	716	220
Chromium	3600	< 3680	14500	7440
Copper	1630	1620	22800	9880
Lead	5170	2500	157000	39400
Selenium	< 581	< 735	< 746	< 610
Silver	< 581	< 735	< 746	< 610
Zinc	12100	15900	131000	46300
Mercury	< 120	< 150	< 150	< 120
	•	•		·····
Total Phosphorus, mg/kg	103	80.4	379	148
COD, mg/kg	6600	40000	65000	9700
Total Organic Carbon, TOC, %	0.3	1.5	2.6	0.6
Oil & Grease (FOG-HEM), mg/kg	400	330	2500	200
Oil & Grease (FOG), mg/kg	30	< 1.0	2000	190
Total Kjeldahl Nitrogen (TKN), mg/kg	150	580	780	220
Ammonia-Nitrogen, mg/kg	18	26	59	23
E. coli , CFU/g	na	na	na	na

Note: the relative percent difference criteria for the following constituents were exceeded:

COD, Oil & Grease (FOG-HEM and FOG), TKN, Ammonia-Nitrogen.

This may be due to either natural sediment heterogeneity, or field or laboratory operations. This variability indicates that the results for these parameters may not be viewed as "precise" but rather approximate.

Table 4.

Sediment Constituents Compared to
Ecological Screening Levels (ESL)
and Probable Effects Concentration (PEC)
(all concentrations in µg/kg)

Metals	ESL	PEC	Sample	Sample	
141Ctais	ESL	TEC	Concentration	Identification	
Arsenic	9,790	33,000	10,000	LV02	
			14,100	LL01	
Lead	35,800	128,000	157,000	SL02	
			64,000	LV02	
Zinc	121,000	459,000	160,000	LV02	
			131,000	SL02	
Polynuclear Aromatic Hydr Benzo(a)anthracene	108		800	SL03	
Benzo(a)anthracene	L	1,050			
Benzo(a)pyrene	150	1,450	690	SL03	
Chrysene	166	1,290	1,400	SL03	
Fluoranthene	423	2,230	2,900	SL03	
Phenanthrene	204	1,170	910	SL03	
Pyrene	195	1,520	2,200	SL03	
*Benzo(g,h,i)perylene	170	670	630	SL03	
*Benzo(k)fluoranthene	240	1,800	770	SL03	
*Indeno(1,2,3-cd)pyrene	200	600	610	SL03	

SL = Sylvan Lake

LV = Lakeville Lake

LL=Loon Lake

EPA ESLs from USEPA Region 5 Resource Conservation and Recovery Act Ecological Screening Levels, August 2003

PEC values taken from MacDonald, et al., 2000

^{*} These three PAHs were detected in SL03 (see Table 3d) but no PEC values are available for these compounds. Apparent Effects Threshold (AET) values (summarized in Buchman, 1999) were referenced for comparison.

Table 5

Toxicity Results for Lakeville Lake and Sylvan Lake

	Lab				
Endpoint	Control	LV-01	LV-02	SL-02	SL-03
Hyalella azteca					
Survival (%)	98	94	93	94	95
Chiroomus tentans					
Survival (%)	98	89	88	99	93
C. tentans Dried					
Weight (mg/org)	1.09	1.48	1.51	1.64	2.22
C. tentans AFDW					
(mg/org)	0.82	1.19	1.11	1.04	1.15

AFDW = ash-free dry weight

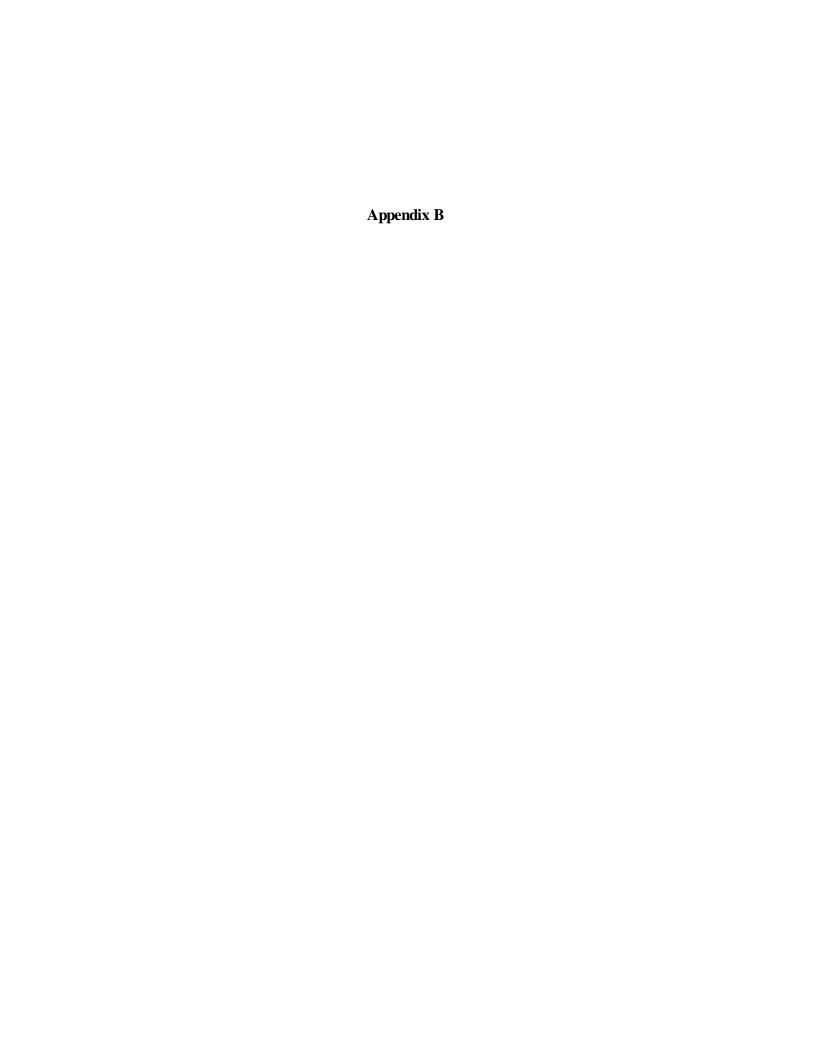

Lake St. Clair Regional Monitoring Project

Table A1 Lake Sediment Data

Duplicate samples

Sample ID	IL0431213S01	IL0431213S81	RPD%	1L023122S01	IL023122SDUP	RPD%	LV0340122-603	LV-Duplicate	%RPD
	Sylvar	Sylvan Lake		Lake	Lake Orion		Lakevi	Lakeville Lake	
PAHs, µg/kg									
Acenaphthene	< 290	< 290		< 290	< 290		069>	< 760	
Acenaphthylene	< 290	< 290		< 290	< 290		069>	< 760	
Anthracene	< 290	< 290	-	< 290	< 290	1	069>	09/>	
Benzo(a)anthracene	< 290	< 290		< 290	< 290		069>	< 760	
Benzo(a)pyrene	< 290	< 290	an es	< 290	< 290	en en	069>	> 760	
Benzo(b)fluoranthene	< 290	< 290		< 290	< 290		069>	< 760	1
Benzo(g,h,i)perylene	< 290	< 290		< 290	< 290		069>	< 760	
Benzo(k)fluoranthene	< 290	< 290		< 290	< 290		069>	092>	
Chrysene	< 290	< 290		< 290	< 290		069>	092>	
Dibenzo(a,h)anthracene	< 290	< 290		< 290	< 290		069>	092>	
Fluoranthene	< 290	< 290		< 290	< 290	-	069>	092>	
Fluorene	< 290	< 290	and and	< 290	< 290		069>	092>	****
Indeno(1,2,3-cd)pyrene	< 290	< 290		< 290	< 290		069>	> 760	and and
2-Methylnaphthalene	< 290	< 290		< 290	< 290		069 >	< 760	
Naphthalene	< 290	< 290		< 290	< 290		069>	092>	***
Phenanthrene	< 290	< 290		< 290	< 290		069>	< 760	I.
Pyrene	< 290	< 290	***	< 290	< 290		069>	< 760	
PCB, μg/kg									
Aroclor 1016	< 58	< 59		< 120	< 120	1	< 280	< 300	an our
Aroclor 1221	< 58	< 59		< 120	< 120		< 280	< 300	1
Aroclor 1232	< 58	< 59		< 120	< 120		< 280	< 300	1
Aroclor 1242	< 58	< 59		< 120	< 120	1	< 280	< 300	•
Aroclor 1248	< 58	< 59	1	< 120	< 120		< 280	< 300	1
Aroclor 1254	< 58	< 59		< 120	< 120	1	< 280	< 300	3
Aroclor 1260	< 58	< 59	tier his	< 120	< 120		< 280	< 300	

Sample ID	IL0431213S01	IL0431213S81	RPD%	IL023122S01	IL023122SDUP	RPD%	LV0340122-603	LV-Duplicate	%RPD
	Sylvar	Sylvan Lake		Lake	Lake Orion		Lakevil	Lakeville Lake	
Chlorinated Pesticides, µg/kg									
Aldrin	< 5.8	< 5.9		< 12	< 12	-	< 28	< 30	-
Dieldrin	< 5.8	< 5.9	-	< 12	< 12	1	< 28	< 30	ŀ
Chlordane(Total)	< 29	< 29		< 59	< 58		< 140	< 150	-
4,4'-DDT	< 5.8	< 5.9	t	< 12	< 12	-	< 28	< 30	1
4,4'-DDE	< 5.8	< 5.9	1	< 12	< 12	-	< 28	< 30	*
4,4'-DDD	< 5.8	< 5.9	1	< 12	< 12	-	< 28	< 30	
Endosulfan I	< 5.8	< 5.9	1	< 12	< 12	5 9	< 28	< 30	
Endosulfan II	< 5.8	< 5.9	1	< 12	< 12		< 28	< 30	7 7
alpha-BHC	< 5.8	< 5.9	ŧ	< 12	< 12		< 28	< 30	
beta-BHC	< 5.8	< 5.9	1	<12	< 12	-	< 28	< 30	
gamma-BHC (Lindane)	< 5.8	< 5.9	-	< 12	< 12	9-90	< 28	< 30	
delta-BHC	< 5.8	< 5.9	-	< 12	<12		< 28	< 30	-
Endosulfan sulfate	< 5.8	< 5.9		< 12	< 12		< 28	< 30	1
Endrin	< 5.8	< 5.9	1	< 12	< 12		< 28	< 30	
Endrin aldehyde	< 5.8	< 5.9	1	< 12	< 12	-	< 28	< 30	-
Heptachlor	< 5.8	< 5.9	**	< 12	< 12	1	< 28	< 30	
Heptachlor epoxide	< 5.8	< 5.9	-	< 12	< 12		< 28	< 30	3 4
Methoxychlor	< 5.8	< 5.9	-	< 12	< 12	-	< 28	< 30	1
Toxaphene	< 290	< 290		< 590	< 580	ļ	< 1400	< 1500	1
ICP Metals, µg/kg									
Arsenic	1740	2000	-13.9	4400	4000	9.5	9400	7300	25.1
Barium	23300	25100	-7.4	14000	11000	24.0	120000	120000	0.0
Cadmium	< 58.1	< 58.8		96	92	23.3	440	480	-8.7
Chromium	3600.0	3180	12.4	2900	4300	-38.9	7200	11000	-41.8
Copper	1630	< 1180	-	3500	4500	-25.0	9200	11000	-17.8
Lead	5170	4240	19.8	31000	43000	-32.4	26000	39000	-40.0
Selenium	< 581	< 588	-	< 590	< 580	1	<1400	< 1500	i.
Silver	< 581	< 588	-	< 590	< 580	1	< 1400	< 1500	***
Zinc	12100	11200	7.7	21000	18000	15.4	64000	83000	-25.9
Mercury	< 120	< 120	:	< 120	< 120		< 280	< 300	-
		,			•	t		ţ	7.40
Total Phosphorus, mg/kg	103.0	96.1	6.9	700	100	60.7	530	00/	0.12-
COD, mg/kg	0099	0086	-39.0	9300	7600	20.1	280000	290000	-3.5
Total Organic Carbon, TOC, %	0.3	0.3	0.0	0.3	0.3	0.0	27.6	24.2	13.1
Oil & Grease (FOG-HEM), mg/kg	400	160	85.7	47	70	-39.3	140	270	-63.4
Oil & Grease (FOG), mg/kg	30	15	66.7	< 1.2	< 1.2	1	< 2.8	< 3.0	
Total Kjeldahl Nitrogen (TKN), mg/kg	150	190	-23.5	116	112	3.5	0069	7200	-4.3
Ammonia-Nitrogen, mg/kg	18	8.6	59.0	12	12	0.0	490	610	-21.8
E. coli, CFU/g	na	na	na	na	na	na	2	< 1	1

Report of Analytical Services

Environmental Consult. & Tech.

Attn: Mark Mikesell 719 Griswold

Suite 520

Detroit, MI 48226

03-5523 RTI Project#: 12/31/03 **Date Reported: Date Completed:** 12/31/03 **Date Received:** 12/16/03 PO#:

Fax: 313-963-1707 Report Number: 03-5523-1

Project Title: 8270-PNA, 8082-PCB, Pesticides, Metals, COD, TOC, FOG, TKN, Ammonia

Project Description: 9 Sediment Smaples

Project Name/#: LSCWQM; 03

Project Remarks:

Sample Summary

	Sample ID	RTI Sample#	Sample Matrix	Date Collected
1	1L0431213S01	03-5523-001	Sediment	12/13/03
2	1L0431213S02	03-5523-002	Sediment	12/13/03
3	1L0431213S81	03-5523-003	Sediment	12/13/03
4	1L0431213S03	03-5523-004	Sediment	12/13/03
5	1L0431213S04	03-5523-005	Sediment	12/13/03
6	1L0331215S01	03-5523-006	Sediment	12/15/03
7	1L0331215S02	03-5523-007	Sediment	12/15/03
8	1L0331215S03	03-5523-008	Sediment	12/15/03
9	1L0331215S04	03-5523-009	Sediment	12/15/03

Approved by :	Date:	

David Vesey, Laboratory Manager, Environmental

The data and information presented herein, while not guaranteed, are to the best of our knowledge accurate and true. No warranty or guarantee implied or expressed is made regarding these analytical results, since securing and properly preserving representative samples and since sample custody chains are beyond RTI control. The results provided by RTI are neither intended to suggest product merchantability, nor for use in infringement of any existing patent. RTI will not assume any liability or responsibility for any such infringement. Alteration or reproduction other than in its entirety is not authorized by RTI Laboratories, Inc.

RESULTS OF ANALYSIS

Client: Environmental Consult. & Tech. RTI Project#: 03-5523

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 2 of 38

Analyte Result PQL Units

Sample ID: 03-5523-001; 1L0431213S01

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03 An	alyzed by: JG3
Acenaphthene	< 290	290	ug/kg
Acenaphthylene	< 290	290	ug/kg
Anthracene	< 290	290	ug/kg
Benzo(a)anthracene	< 290	290	ug/kg
Benzo(a)pyrene	< 290	290	ug/kg
Benzo(b)fluoranthene	< 290	290	ug/kg
Benzo(ghi)Perylene	< 290	290	ug/kg
Benzo(k)fluoranthene	< 290	290	ug/kg
Chrysene	< 290	290	ug/kg
Dibenzo(a,h)anthracene	< 290	290	ug/kg
Fluoranthene	< 290	290	ug/kg
Fluorene	< 290	290	ug/kg
Indeno(1,2,3-cd)pyrene	< 290	290	ug/kg
2-Methylnaphthalene	< 290	290	ug/kg
Naphthalene	< 290	290	ug/kg
Phenanthrene	< 290	290	ug/kg
Pyrene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	57.0	30 - 115	
Nitrobenzene-d5 (surr.)	63.0	23 - 120	
Terphenyl-d14 (surr.)	59.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed:	12/29/03	Analyzed by	7: JG3
Aroclor 1016	< 58	58		ug/kg
Aroclor 1221	< 58	58		ug/kg
Aroclor 1232	< 58	58		ug/kg
Aroclor 1242	< 58	58		ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 3 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-001; 1L0431213S01

r			
Aroclor 1248	< 58	58	ug/kg
Aroclor 1254	< 58	58	ug/kg
Aroclor 1260	< 58	58	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	34	30 - 115	

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 Analyzed	by: JG3
Aldrin	< 5.8	5.8	ug/kg
Dieldrin	< 5.8	5.8	ug/kg
Chlordane(Total)	< 29	29	ug/kg
4,4'-DDT	< 5.8	5.8	ug/kg
4,4'-DDE	< 5.8	5.8	ug/kg
4,4'-DDD	< 5.8	5.8	ug/kg
Endosulfan I	< 5.8	5.8	ug/kg
Endosulfan II	< 5.8	5.8	ug/kg
alpha-BHC	< 5.8	5.8	ug/kg
beta-BHC	< 5.8	5.8	ug/kg
gamma-BHC (Lindane)	< 5.8	5.8	ug/kg
delta-BHC	< 5.8	5.8	ug/kg
Endosulfan sulfate	< 5.8	5.8	ug/kg
Endrin	< 5.8	5.8	ug/kg
Endrin aldehyde	< 5.8	5.8	ug/kg
Heptachlor	< 5.8	5.8	ug/kg
Heptachlor epoxide	< 5.8	5.8	ug/kg
Methoxychlor	< 5.8	5.8	ug/kg
Toxaphene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	34.0	30 - 115	

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 4 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-001; 1L0431213S01

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date Analyzed:	12/23/03	Analyzed by:	AB2
Arsenic, As			1740	1160		ug/kg
Barium, Ba			23300	1160		ug/kg
Cadmium, Cd			< 58.1	58.1		ug/kg
Chromium, Cr			3600	2910		ug/kg
Lead, Pb			5170	1160		ug/kg
Selenium, Se			< 581	581		ug/kg
Silver, Ag			< 581	581		ug/kg
Copper, Cu			1630	1160		ug/kg
Zinc, Zn			12100	1160		ug/kg
Phosphorus, as P			10300	0 1160		ug/kg

Mercury (Hg)

Method(s): 7471A	Date Analyzed:	12/29/03	Analyz	ed by:	SM
Mercury, Hg	< 120		120		ug/kg

COD - Soil

Method(s): 410.4	Date Analyzed:	12/19/03	Analyze	ed by:	SM
COD	6600	2	23	MC	G/KG

Walkley-Black TOC

Method(s): WB		Date Analyzed:	12/23/03	3 Analyz	ed by:	SM	
	Carbon, Total Organic, TOC	0.3		0.1		%	

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed:		Analyzo	zed by: SM	
Oil/Grease	400		1.0		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664		Date A	nalyzed:	12/24/03		Analyze	ed by:	SM
	Oil/Grease		30		1.0			mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 5 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-001; 1L0431213S01

Nitrogen-Kjeldahl

Method(s):351.3Date Analyzed:12/29/03Analyzed by:SMNitrogen, Total Kjeldahl (TKN)1501.2mg/kg

Nitrogen-Ammonia

 Method(s):
 350.2
 Date Analyzed:
 12/29/03
 Analyzed by:
 SM

 Nitrogen, Ammonia (as N)
 18
 0.12
 mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 6 of 38

Analyte Result PQL Units

Sample ID: 03-5523-002; 1L0431213S02

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03	Analyzed by: JG3
Acenaphthene	< 370	370	ug/kg
Acenaphthylene	< 370	370	ug/kg
Anthracene	< 370	370	ug/kg
Benzo(a)anthracene	< 370	370	ug/kg
Benzo(a)pyrene	< 370	370	ug/kg
Benzo(b)fluoranthene	< 370	370	ug/kg
Benzo(ghi)Perylene	< 370	370	ug/kg
Benzo(k)fluoranthene	< 370	370	ug/kg
Chrysene	< 370	370	ug/kg
Dibenzo(a,h)anthracene	< 370	370	ug/kg
Fluoranthene	< 370	370	ug/kg
Fluorene	< 370	370	ug/kg
Indeno(1,2,3-cd)pyrene	< 370	370	ug/kg
2-Methylnaphthalene	< 370	370	ug/kg
Naphthalene	< 370	370	ug/kg
Phenanthrene	< 370	370	ug/kg
Pyrene	< 370	370	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	70.0	30 - 115	
Nitrobenzene-d5 (surr.)	82.0	23 - 120	
Terphenyl-d14 (surr.)	75.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29/03	Analyzed by	JG3
Aroclor 1016	< 74	74	ug/kg
Aroclor 1221	< 74	74	ug/kg
Aroclor 1232	< 74	74	ug/kg
Aroclor 1242	< 74	74	ug/kg
Aroclor 1248	< 74	74	ug/kg
Aroclor 1254	< 74	74	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 7 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-002; 1L0431213S02

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)6430 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 An	alyzed by: JG3
Aldrin	< 7.4	7.4	ug/kg
Dieldrin	< 7.4	7.4	ug/kg
Chlordane(Total)	< 37	37	ug/kg
4,4'-DDT	< 7.4	7.4	ug/kg
4,4'-DDE	< 7.4	7.4	ug/kg
4,4'-DDD	< 7.4	7.4	ug/kg
Endosulfan I	< 7.4	7.4	ug/kg
Endosulfan II	< 7.4	7.4	ug/kg
alpha-BHC	< 7.4	7.4	ug/kg
beta-BHC	< 7.4	7.4	ug/kg
gamma-BHC (Lindane)	< 7.4	7.4	ug/kg
delta-BHC	< 7.4	7.4	ug/kg
Endosulfan sulfate	< 7.4	7.4	ug/kg
Endrin	< 7.4	7.4	ug/kg
Endrin aldehyde	< 7.4	7.4	ug/kg
Heptachlor	< 7.4	7.4	ug/kg
Heptachlor epoxide	< 7.4	7.4	ug/kg
Methoxychlor	< 7.4	7.4	ug/kg
Toxaphene	< 370	370	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	64.0	30 - 115	·

Total Metals

Method(s): 3050, 6020 Date Prepared: 12/23/03 Date Analyzed:		ed: 12/23/03 A		Analyze	lyzed by: Al				
Arsenic, As				2650		1470			ug/kg

Client: Environmental Consult. & Tech. RTI Project#: 03-5523 Project: LSCWQM, 03 Page: Page 8 of 38 Report Number: 03-5523-1 Analyte Result **PQL** Units continued from previous page... **Sample ID:** 03-5523-002; 1L0431213S02 Barium, Ba 129000 1470 ug/kg Cadmium, Cd 162 73.5 ug/kg Chromium, Cr < 3680 3680 ug/kg Lead, Pb 2500 1470 ug/kg Selenium, Se < 735 735 ug/kg Silver, Ag < 735 735 ug/kg Copper, Cu 1620 1470 ug/kg Zinc, Zn 15900 1470 ug/kg Phosphorus, as P 80400 1470 ug/kg Mercury (Hg) Method(s): 7471A Date Analyzed: 12/29/03 Analyzed by: SM Mercury, Hg < 150 150 ug/kg COD - Soil **Method(s):** 410.4 Date Analyzed: 12/19/03 Analyzed by: SM COD 40000 29 MG/KG Walkley-Black TOC Method(s): WB Date Analyzed: 12/23/03 Analyzed by: SM 0.1 Carbon, Total Organic, TOC 1.5 % Oil & Grease (FOG-HEM) Method(s): 3540C, 1664-HEM Date Analyzed: Analyzed by: SM 12/29/03 Oil/Grease 1.0 330 mg/kg Oil & Grease (FOG)

Nitrogen, Total Kjeldahl (TKN) 580 1.5 mg/kg

Email: info@rtilab.com V

Method(s): 3540C, 1664

Nitrogen-Kjeldahl Method(s): 351.3

Oil/Grease

Website: rtilab.com

Date Analyzed:

Date Analyzed:

< 1.0

12/24/03

12/29/03

1.0

Analyzed by:

Analyzed by:

SM

SM

mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 9 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-002; 1L0431213S02

Nitrogen-Ammonia

Method(s):350.2Date Analyzed:12/29/03Analyzed by:SMNitrogen, Ammonia (as N)260.15mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 10 of 38

Analyte Result PQL Units

Sample ID: 03-5523-003; 1L0431213S81

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03 An	alyzed by: JG3
Acenaphthene	< 290	290	ug/kg
Acenaphthylene	< 290	290	ug/kg
Anthracene	< 290	290	ug/kg
Benzo(a)anthracene	< 290	290	ug/kg
Benzo(a)pyrene	< 290	290	ug/kg
Benzo(b)fluoranthene	< 290	290	ug/kg
Benzo(ghi)Perylene	< 290	290	ug/kg
Benzo(k)fluoranthene	< 290	290	ug/kg
Chrysene	< 290	290	ug/kg
Dibenzo(a,h)anthracene	< 290	290	ug/kg
Fluoranthene	< 290	290	ug/kg
Fluorene	< 290	290	ug/kg
Indeno(1,2,3-cd)pyrene	< 290	290	ug/kg
2-Methylnaphthalene	< 290	290	ug/kg
Naphthalene	< 290	290	ug/kg
Phenanthrene	< 290	290	ug/kg
Pyrene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	73.0	30 - 115	
Nitrobenzene-d5 (surr.)	76.0	23 - 120	
Terphenyl-d14 (surr.)	72.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed:	12/29/03	Analyzed by:	JG3
Aroclor 1016	< 59	59		ug/kg
Aroclor 1221	< 59	59		ug/kg
Aroclor 1232	< 59	59		ug/kg
Aroclor 1242	< 59	59		ug/kg
Aroclor 1248	< 59	59		ug/kg
Aroclor 1254	< 59	59		ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 11 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-003; 1L0431213S81

Aroclor 1260 < 59 59 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)6730 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 Anal	yzed by: JG3
Aldrin	< 5.9	5.9	ug/kg
Dieldrin	< 5.9	5.9	ug/kg
Chlordane(Total)	< 29	29	ug/kg
4,4'-DDT	< 5.9	5.9	ug/kg
4,4'-DDE	< 5.9	5.9	ug/kg
4,4'-DDD	< 5.9	5.9	ug/kg
Endosulfan I	< 5.9	5.9	ug/kg
Endosulfan II	< 5.9	5.9	ug/kg
alpha-BHC	< 5.9	5.9	ug/kg
beta-BHC	< 5.9	5.9	ug/kg
gamma-BHC (Lindane)	< 5.9	5.9	ug/kg
delta-BHC	< 5.9	5.9	ug/kg
Endosulfan sulfate	< 5.9	5.9	ug/kg
Endrin	< 5.9	5.9	ug/kg
Endrin aldehyde	< 5.9	5.9	ug/kg
Heptachlor	< 5.9	5.9	ug/kg
Heptachlor epoxide	< 5.9	5.9	ug/kg
Methoxychlor	< 5.9	5.9	ug/kg
Toxaphene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	67.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date A	nalyzed:	12/23/03	Analyz	ed by:	AB2
Arsenic, As				2000		1180		ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 12 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-003; 1L0431213S81

Barium, Ba	25100	1180	ug/kg
Cadmium, Cd	< 58.8	58.8	ug/kg
Chromium, Cr	3180	2940	ug/kg
Lead, Pb	4240	1180	ug/kg
Selenium, Se	< 588	588	ug/kg
Silver, Ag	< 588	588	ug/kg
Copper, Cu	< 1180	1180	ug/kg
Zinc, Zn	11200	1180	ug/kg
Phosphorus, as P	96100	1180	ug/kg

Mercury (Hg)

Method(s): 7471A	Date An	alyzed:	12/29/03	Analyze	ed by:	SM
Mercury, Hg	<	< 120		120		ug/kg

COD - Soil

Method(s): 410.4	Date Ana	lyzed:	12/19/03	Anal	yzed by:	SM
COD		9800		24	N	MG/KG

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	12/23/03	;	Analyz	ed by:	SM	
Carbon, Total Organic, TOC		0.3		0.1			%	l

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed:	12/29/03	Analyzed by:	SM
Oil/Grease	160	1.0		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyzed:	12/24/03	Analyzed by:	SM
Oil/Grease	15	1.0		mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	190	1.2		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 13 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-003; 1L0431213S81

Nitrogen-Ammonia

 Method(s):
 350.2
 Date Analyzed:
 12/29/03
 Analyzed by:
 SM

 Nitrogen, Ammonia (as N)
 9.8
 0.12
 mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 14 of 38

Analyte Result PQL Units

Sample ID: 03-5523-004; 1L0431213S03

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03	Analyzed by: JG3
Acenaphthene	< 370	370	ug/kg
Acenaphthylene	< 370	370	ug/kg
Anthracene	< 370	370	ug/kg
Benzo(a)anthracene	< 370	370	ug/kg
Benzo(a)pyrene	< 370	370	ug/kg
Benzo(b)fluoranthene	< 370	370	ug/kg
Benzo(ghi)Perylene	< 370	370	ug/kg
Benzo(k)fluoranthene	< 370	370	ug/kg
Chrysene	< 370	370	ug/kg
Dibenzo(a,h)anthracene	< 370	370	ug/kg
Fluoranthene	< 370	370	ug/kg
Fluorene	< 370	370	ug/kg
Indeno(1,2,3-cd)pyrene	< 370	370	ug/kg
2-Methylnaphthalene	< 370	370	ug/kg
Naphthalene	< 370	370	ug/kg
Phenanthrene	< 370	370	ug/kg
Pyrene	< 370	370	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	68.0	30 - 115	
Nitrobenzene-d5 (surr.)	77.0	23 - 120	
Terphenyl-d14 (surr.)	63.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29/0	Analyzed by:	JG3
Aroclor 1016	< 75	75	ug/kg
Aroclor 1221	< 75	75	ug/kg
Aroclor 1232	< 75	75	ug/kg
Aroclor 1242	< 75	75	ug/kg
Aroclor 1248	< 75	75	ug/kg
Aroclor 1254	< 75	75	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 15 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-004; 1L0431213S03

Aroclor 1260 < 75 75 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)4430 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 Analyz	ed by: JG3
Aldrin	< 7.5	7.5	ug/kg
Dieldrin	< 7.5	7.5	ug/kg
Chlordane(Total)	< 37	37	ug/kg
4,4'-DDT	< 7.5	7.5	ug/kg
4,4'-DDE	< 7.5	7.5	ug/kg
4,4'-DDD	< 7.5	7.5	ug/kg
Endosulfan I	< 7.5	7.5	ug/kg
Endosulfan II	< 7.5	7.5	ug/kg
alpha-BHC	< 7.5	7.5	ug/kg
beta-BHC	< 7.5	7.5	ug/kg
gamma-BHC (Lindane)	< 7.5	7.5	ug/kg
delta-BHC	< 7.5	7.5	ug/kg
Endosulfan sulfate	< 7.5	7.5	ug/kg
Endrin	< 7.5	7.5	ug/kg
Endrin aldehyde	< 7.5	7.5	ug/kg
Heptachlor	< 7.5	7.5	ug/kg
Heptachlor epoxide	< 7.5	7.5	ug/kg
Methoxychlor	< 7.5	7.5	ug/kg
Toxaphene	< 370	370	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	44.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date Analyzed:		Date Analyzed:		12/23/03	Analyz	ed by:	AB2
Arsenic, As				6570		1490		ug/kg		

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 16 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-004; 1L0431213S03

Barium, Ba	77600	1490	ug/kg
Darium, Da	77000	1490	ug/kg
Cadmium, Cd	716	74.6	ug/kg
Chromium, Cr	14500	3730	ug/kg
Lead, Pb	157000	1490	ug/kg
Selenium, Se	< 746	746	ug/kg
Silver, Ag	< 746	746	ug/kg
Copper, Cu	22800	1490	ug/kg
Zinc, Zn	131000	1490	ug/kg
Phosphorus, as P	379000	1490	ug/kg

Mercury (Hg)

Method(s): 7471A	Date Analyzed:	12/29/03	Analyzed by:	SM
Mercury, Hg	< 150	150		ug/kg

COD - Soil

Method(s): 410.4	Date Ar	nalyzed:	12/19/03		Analyze	ed by:	SM	
COD		65000		30		M	IG/KG	

Walkley-Black TOC

Method(s): WB	Date Analyzed:			12/23/03 Analyz			SM	
Carbon, Total Organic, TOC		2.6		0.1			%	l

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed	: 12/29/03	3 Analyz	ed by:	SM
Oil/Grease	2500)	1.0		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyze	d: 12/24/03	3 Analyz	ed by:	SM
Oil/Grease	200	00	1.0	1	mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	780	1.5		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 17 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-004; 1L0431213S03

Nitrogen-Ammonia

 Method(s):
 350.2
 Date Analyzed:
 12/29/03
 Analyzed by:
 SM

 Nitrogen, Ammonia (as N)
 59
 0.15
 mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 18 of 38

Analyte Result PQL Units

Sample ID: 03-5523-005; 1L0431213S04

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03	Analyzed by: JG3
Acenaphthene	< 300	300	ug/kg
Acenaphthylene	< 300	300	ug/kg
Anthracene	< 300	300	ug/kg
Benzo(a)anthracene	800	300	ug/kg
Benzo(a)pyrene	690	300	ug/kg
Benzo(b)fluoranthene	840	300	ug/kg
Benzo(ghi)Perylene	630	300	ug/kg
Benzo(k)fluoranthene	770	300	ug/kg
Chrysene	1400	300	ug/kg
Dibenzo(a,h)anthracene	< 300	300	ug/kg
Fluoranthene	2900	300	ug/kg
Fluorene	< 300	300	ug/kg
Indeno(1,2,3-cd)pyrene	610	300	ug/kg
2-Methylnaphthalene	< 300	300	ug/kg
Naphthalene	< 300	300	ug/kg
Phenanthrene	910	300	ug/kg
Pyrene	2200	300	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	55.0	30 - 115	
Nitrobenzene-d5 (surr.)	56.0	23 - 120	
Terphenyl-d14 (surr.)	73.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29/0	3 Analyzed	d by: JG3
Aroclor 1016	< 61	61	ug/kg
Aroclor 1221	< 61	61	ug/kg
Aroclor 1232	< 61	61	ug/kg
Aroclor 1242	< 61	61	ug/kg
Aroclor 1248	< 61	61	ug/kg
Aroclor 1254	< 61	61	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 19 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-005; 1L0431213S04

Aroclor 1260 < 61 d1 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)6730 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 A	analyzed by: JG3
Aldrin	< 6.1	6.1	ug/kg
Dieldrin	< 6.1	6.1	ug/kg
Chlordane(Total)	< 30	30	ug/kg
4,4'-DDT	< 6.1	6.1	ug/kg
4,4'-DDE	< 6.1	6.1	ug/kg
4,4'-DDD	< 6.1	6.1	ug/kg
Endosulfan I	< 6.1	6.1	ug/kg
Endosulfan II	< 6.1	6.1	ug/kg
alpha-BHC	< 6.1	6.1	ug/kg
beta-BHC	< 6.1	6.1	ug/kg
gamma-BHC (Lindane)	< 6.1	6.1	ug/kg
delta-BHC	< 6.1	6.1	ug/kg
Endosulfan sulfate	< 6.1	6.1	ug/kg
Endrin	< 6.1	6.1	ug/kg
Endrin aldehyde	< 6.1	6.1	ug/kg
Heptachlor	< 6.1	6.1	ug/kg
Heptachlor epoxide	< 6.1	6.1	ug/kg
Methoxychlor	< 6.1	6.1	ug/kg
Toxaphene	< 300	300	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	67.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date Analyze	d: 12/23/03	3 Analyz	ed by:	AB2
Arsenic, As			232	0	1220		ug/kg

Client: Environmental Consult. & Tech. RTI Project#: 03-5523 Project: LSCWQM, 03 **Page:** Page 20 of 38 Report Number: 03-5523-1 Analyte Result **PQL** Units continued from previous page... **Sample ID:** 03-5523-005; 1L0431213S04 Barium, Ba 9760 1220 ug/kg Cadmium, Cd 220 61.0 ug/kg Chromium, Cr 7440 3050 ug/kg Lead, Pb 39400 1220 ug/kg Selenium, Se < 610 610 ug/kg Silver, Ag < 610 610 ug/kg Copper, Cu 9880 1220 ug/kg Zinc, Zn 46300 1220 ug/kg 148000 Phosphorus, as P 1220 ug/kg Mercury (Hg) Method(s): 7471A Date Analyzed: 12/29/03 Analyzed by: SM Mercury, Hg < 120 120 ug/kg COD - Soil **Method(s):** 410.4 **Date Analyzed:** 12/19/03 Analyzed by: SM COD 9700 24 MG/KG Walkley-Black TOC Method(s): WB **Date Analyzed:** 12/23/03 Analyzed by: SM 0.1 Carbon, Total Organic, TOC 0.6 % Oil & Grease (FOG-HEM) Method(s): 3540C, 1664-HEM Date Analyzed: 12/29/03 Analyzed by: SM

Oil & Grease (FOG)

Oil/Grease

Method(s): 3540C, 1664	Date Analyzed:	12/24/03	Analyzed by:	SM
Oil/Grease	190	1.0		mg/kg

1.0

mg/kg

200

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	220	1.2		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 21 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-005; 1L0431213S04

Nitrogen-Ammonia

Method(s):350.2Date Analyzed:12/29/03Analyzed by:SMNitrogen, Ammonia (as N)230.12mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 22 of 38

Analyte Result PQL Units

Sample ID: 03-5523-006; 1L0331215S01

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03	Analyzed by: JG3
Acenaphthene	< 740	740	ug/kg
Acenaphthylene	< 740	740	ug/kg
Anthracene	< 740	740	ug/kg
Benzo(a)anthracene	< 740	740	ug/kg
Benzo(a)pyrene	< 740	740	ug/kg
Benzo(b)fluoranthene	< 740	740	ug/kg
Benzo(ghi)Perylene	< 740	740	ug/kg
Benzo(k)fluoranthene	< 740	740	ug/kg
Chrysene	< 740	740	ug/kg
Dibenzo(a,h)anthracene	< 740	740	ug/kg
Fluoranthene	< 740	740	ug/kg
Fluorene	< 740	740	ug/kg
Indeno(1,2,3-cd)pyrene	< 740	740	ug/kg
2-Methylnaphthalene	< 740	740	ug/kg
Naphthalene	< 740	740	ug/kg
Phenanthrene	< 740	740	ug/kg
Pyrene	< 740	740	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	69.0	30 - 115	
Nitrobenzene-d5 (surr.)	77.0	23 - 120	
Terphenyl-d14 (surr.)	83.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29	/03 Analyzed	by: JG3
Aroclor 1016	< 150	150	ug/kg
Aroclor 1221	< 150	150	ug/kg
Aroclor 1232	< 150	150	ug/kg
Aroclor 1242	< 150	150	ug/kg
Aroclor 1248	< 150	150	ug/kg
Aroclor 1254	< 150	150	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 23 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-006; 1L0331215S01

Aroclor 1260 < 150 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)6230 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 Analy	yzed by: JG3
Aldrin	< 15	15	ug/kg
Dieldrin	< 15	15	ug/kg
Chlordane(Total)	< 74	74	ug/kg
4,4'-DDT	< 15	15	ug/kg
4,4'-DDE	< 15	15	ug/kg
4,4'-DDD	< 15	15	ug/kg
Endosulfan I	< 15	15	ug/kg
Endosulfan II	< 15	15	ug/kg
alpha-BHC	< 15	15	ug/kg
beta-BHC	< 15	15	ug/kg
gamma-BHC (Lindane)	< 15	15	ug/kg
delta-BHC	< 15	15	ug/kg
Endosulfan sulfate	< 15	15	ug/kg
Endrin	< 15	15	ug/kg
Endrin aldehyde	< 15	15	ug/kg
Heptachlor	< 15	15	ug/kg
Heptachlor epoxide	< 15	15	ug/kg
Methoxychlor	< 15	15	ug/kg
Toxaphene	< 740	740	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	62.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date A	nalyzed:	12/23/03		Analyze	ed by:	AB2
Arsenic, As				14100		2940			ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 24 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-006; 1L0331215S01

•			
Barium, Ba	39400	2940	ug/kg
Cadmium, Cd	176	147	ug/kg
Chromium, Cr	< 7350	7350	ug/kg
Lead, Pb	5000	2940	ug/kg
Selenium, Se	< 1470	1470	ug/kg
Silver, Ag	< 1470	1470	ug/kg
Copper, Cu	4710	2940	ug/kg
Zinc, Zn	27900	2940	ug/kg
Phosphorus, as P	221000	2940	ug/kg

Mercury (Hg)

Method(s): 7471A	Date Analyzed:	12/29/03	Analyzeo	d by: SM
Mercury, Hg	< 290	290)	ug/kg

COD - Soil

Method(s): 410.4	Date Analyzed: 12/19/03	Analyzed	d by: SM
COD	32000	59	MG/KG

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	12/23/03	;	Analyz	ed by:	SM	
Carbon, Total Organic, TOC		26.2		0.3			%	l

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed	l: 12/29/03	3 Analy	zed by:	SM
Oil/Grease	520		1.0		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyzed:	12/24/03	Analyz	ed by:	SM
Oil/Grease	20		1.0		mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	4900	2.9		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 25 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-006; 1L0331215S01

Nitrogen-Ammonia

Method(s):350.2Date Analyzed:12/29/03Analyzed by:SMNitrogen, Ammonia (as N)3800.29mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 26 of 38

Analyte Result PQL Units

Sample ID: 03-5523-007; 1L0331215S02

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03	Analyzed by: JG3
Acenaphthene	< 740	740	ug/kg
Acenaphthylene	< 740	740	ug/kg
Anthracene	< 740	740	ug/kg
Benzo(a)anthracene	< 740	740	ug/kg
Benzo(a)pyrene	< 740	740	ug/kg
Benzo(b)fluoranthene	< 740	740	ug/kg
Benzo(ghi)Perylene	< 740	740	ug/kg
Benzo(k)fluoranthene	< 740	740	ug/kg
Chrysene	< 740	740	ug/kg
Dibenzo(a,h)anthracene	< 740	740	ug/kg
Fluoranthene	< 740	740	ug/kg
Fluorene	< 740	740	ug/kg
Indeno(1,2,3-cd)pyrene	< 740	740	ug/kg
2-Methylnaphthalene	< 740	740	ug/kg
Naphthalene	< 740	740	ug/kg
Phenanthrene	< 740	740	ug/kg
Pyrene	< 740	740	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	53.0	30 - 115	
Nitrobenzene-d5 (surr.)	56.0	23 - 120	
Terphenyl-d14 (surr.)	52.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29	/03 Analyzed	by: JG3
Aroclor 1016	< 150	150	ug/kg
Aroclor 1221	< 150	150	ug/kg
Aroclor 1232	< 150	150	ug/kg
Aroclor 1242	< 150	150	ug/kg
Aroclor 1248	< 150	150	ug/kg
Aroclor 1254	< 150	150	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 27 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-007; 1L0331215S02

Aroclor 1260 < 150 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)5530 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed: 12	/29/03 Analyzed by	y: JG3
Aldrin	< 15	15	ug/kg
Dieldrin	< 15	15	ug/kg
Chlordane(Total)	< 74	74	ug/kg
4,4'-DDT	< 15	15	ug/kg
4,4'-DDE	< 15	15	ug/kg
4,4'-DDD	< 15	15	ug/kg
Endosulfan I	< 15	15	ug/kg
Endosulfan II	< 15	15	ug/kg
alpha-BHC	< 15	15	ug/kg
beta-BHC	< 15	15	ug/kg
gamma-BHC (Lindane)	< 15	15	ug/kg
delta-BHC	< 15	15	ug/kg
Endosulfan sulfate	< 15	15	ug/kg
Endrin	< 15	15	ug/kg
Endrin aldehyde	< 15	15	ug/kg
Heptachlor	< 15	15	ug/kg
Heptachlor epoxide	< 15	15	ug/kg
Methoxychlor	< 15	15	ug/kg
Toxaphene	< 740	740	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	55.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date A	nalyzed:	12/23/03		Analyze	ed by:	AB2
Arsenic, As				8240		2940			ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 28 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-007; 1L0331215S02

Suitate 25. 05 5525 007, 120551215502			
Barium, Ba	42600	2940	ug/kg
Cadmium, Cd	221	147	ug/kg
Chromium, Cr	< 7350	7350	ug/kg
Lead, Pb	10000	2940	ug/kg
Selenium, Se	< 1470	1470	ug/kg
Silver, Ag	< 1470	1470	ug/kg
Copper, Cu	7940	2940	ug/kg
Zinc, Zn	32900	2940	ug/kg
Phosphorus, as P	324000	2940	ug/kg

Mercury (Hg)

Method(s): 74/1A	Date Analyz	zed: 12/29/03	S Analyz	ed by:	SM
Mercury, Hg	< 29	90	290	ι	ug/kg

COD - Soil

Method(s): 410.4	Date A	nalyzed:	12/19/03		Analyze	ed by:	SM	
COD		300000		59		M	G/KG	

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	12/23/03	;	Analyz	ed by:	SM	
Carbon, Total Organic, TOC		29.3		0.3			%	ì

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyze	ed: 12/29/03	3 Analyz	zed by:	SM
Oil/Grease	140)0	1.0		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyzed:	12/24/03	3 Analyz	ed by:	SM
Oil/Grease	160		1.0		mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed: 12	2/29/03 Anal	yzed by: SM
Nitrogen, Total Kjeldahl (TKN)	7400	2.9	mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 29 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-007; 1L0331215S02

Nitrogen-Ammonia

 Method(s):
 350.2
 Date Analyzed:
 12/29/03
 Analyzed by:
 SM

 Nitrogen, Ammonia (as N)
 720
 0.29
 mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 30 of 38

Analyte Result PQL Units

Sample ID: 03-5523-008; 1L0331215S03

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03 Ana	alyzed by: JG3
Acenaphthene	< 1500	1500	ug/kg
Acenaphthylene	< 1500	1500	ug/kg
Anthracene	< 1500	1500	ug/kg
Benzo(a)anthracene	< 1500	1500	ug/kg
Benzo(a)pyrene	< 1500	1500	ug/kg
Benzo(b)fluoranthene	< 1500	1500	ug/kg
Benzo(ghi)Perylene	< 1500	1500	ug/kg
Benzo(k)fluoranthene	< 1500	1500	ug/kg
Chrysene	< 1500	1500	ug/kg
Dibenzo(a,h)anthracene	< 1500	1500	ug/kg
Fluoranthene	< 1500	1500	ug/kg
Fluorene	< 1500	1500	ug/kg
Indeno(1,2,3-cd)pyrene	< 1500	1500	ug/kg
2-Methylnaphthalene	< 1500	1500	ug/kg
Naphthalene	< 1500	1500	ug/kg
Phenanthrene	< 1500	1500	ug/kg
Pyrene	< 1500	1500	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	55.0	30 - 115	
Nitrobenzene-d5 (surr.)	61.0	23 - 120	
Terphenyl-d14 (surr.)	62.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12	/29/03 Analy	zed by: JG3
Aroclor 1016	< 290	290	ug/kg
Aroclor 1221	< 290	290	ug/kg
Aroclor 1232	< 290	290	ug/kg
Aroclor 1242	< 290	290	ug/kg
Aroclor 1248	< 290	290	ug/kg
Aroclor 1254	< 290	290	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 31 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-008; 1L0331215S03

Aroclor 1260 < 290 ug/kg

Surrogate Recovery Data

 Compound
 % Recovery
 Acceptable Limits(%)
 Qualifier

 Decachlorobiphenyl (Surr)
 81
 30 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed	: 12/29/03	Analyzed by: JG3
Aldrin	< 29	29	ug/kg
Dieldrin	< 29	29	ug/kg
Chlordane(Total)	< 150	150	ug/kg
4,4'-DDT	< 29	29	ug/kg
4,4'-DDE	< 29	29	ug/kg
4,4'-DDD	< 29	29	ug/kg
Endosulfan I	< 29	29	ug/kg
Endosulfan II	< 29	29	ug/kg
alpha-BHC	< 29	29	ug/kg
beta-BHC	< 29	29	ug/kg
gamma-BHC (Lindane)	< 29	29	ug/kg
delta-BHC	< 29	29	ug/kg
Endosulfan sulfate	< 29	29	ug/kg
Endrin	< 29	29	ug/kg
Endrin aldehyde	< 29	29	ug/kg
Heptachlor	< 29	29	ug/kg
Heptachlor epoxide	< 29	29	ug/kg
Methoxychlor	< 29	29	ug/kg
Toxaphene	< 2900	2900	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	81.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date Anal	lyzed:	12/23/03	Analyz	ed by:	AB2
Arsenic, As				8820		5880		ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 32 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-008; 1L0331215S03

Barium, Ba	151000	5880	ug/kg
Cadmium, Cd	447	294	ug/kg
Chromium, Cr	< 14700	14700	ug/kg
Lead, Pb	19400	5880	ug/kg
Selenium, Se	< 2940	2940	ug/kg
Silver, Ag	< 2940	2940	ug/kg
Copper, Cu	12900	5880	ug/kg
Zinc, Zn	43500	5880	ug/kg
Phosphorus, as P	800000	5880	ug/kg

Mercury (Hg)

Method(s): 74/1A	Date Analyze	e d: 12/29/03	3 Analyz	ed by:	SM
Mercury, Hg	< 590)	590		ug/kg

COD - Soil

Method(s): 410.4	Date A	nalyzed:	12/19/03		Analyze	ed by:	SM	
COD		670000		118		M	G/KG	

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	12/23/03		Analyze	ed by:	SM	
Carbon, Total Organic, TOC		115		0.6			%	

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed:	12/29/03	Analyze	d by:	SM
Oil/Grease	1300	1.0)		mg/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyzed:	12/24/03		ed by:	SM
Oil/Grease	230		1.0		mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	20000	5.9		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 33 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-008; 1L0331215S03

Nitrogen-Ammonia

 Method(s):
 350.2
 Date Analyzed:
 12/29/03
 Analyzed by:
 SM

 Nitrogen, Ammonia (as N)
 1400
 0.59
 mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 34 of 38

Analyte Result PQL Units

Sample ID: 03-5523-009; 1L0331215S04

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	12/30/03 An	alyzed by: JG3
Acenaphthene	< 480	480	ug/kg
Acenaphthylene	< 480	480	ug/kg
Anthracene	< 480	480	ug/kg
Benzo(a)anthracene	< 480	480	ug/kg
Benzo(a)pyrene	< 480	480	ug/kg
Benzo(b)fluoranthene	< 480	480	ug/kg
Benzo(ghi)Perylene	< 480	480	ug/kg
Benzo(k)fluoranthene	< 480	480	ug/kg
Chrysene	< 480	480	ug/kg
Dibenzo(a,h)anthracene	< 480	480	ug/kg
Fluoranthene	< 480	480	ug/kg
Fluorene	< 480	480	ug/kg
Indeno(1,2,3-cd)pyrene	< 480	480	ug/kg
2-Methylnaphthalene	< 480	480	ug/kg
Naphthalene	< 480	480	ug/kg
Phenanthrene	< 480	480	ug/kg
Pyrene	< 480	480	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	43.0	30 - 115	
Nitrobenzene-d5 (surr.)	50.0	23 - 120	
Terphenyl-d14 (surr.)	47.0	18 - 137	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 12/29/03	Analyzed by	JG 3
Aroclor 1016	< 96	96	ug/kg
Aroclor 1221	< 96	96	ug/kg
Aroclor 1232	< 96	96	ug/kg
Aroclor 1242	< 96	96	ug/kg
Aroclor 1248	< 96	96	ug/kg
Aroclor 1254	< 96	96	ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 35 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-009; 1L0331215S04

Aroclor 1260 < 96 96 ug/kg

Surrogate Recovery Data

Compound% RecoveryAcceptable Limits(%)QualifierDecachlorobiphenyl (Surr)7130 - 115

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	12/29/03 A	Analyzed by: JG3
Aldrin	< 9.6	9.6	ug/kg
Dieldrin	< 9.6	9.6	ug/kg
Chlordane(Total)	< 48	48	ug/kg
4,4'-DDT	< 9.6	9.6	ug/kg
4,4'-DDE	< 9.6	9.6	ug/kg
4,4'-DDD	< 9.6	9.6	ug/kg
Endosulfan I	< 9.6	9.6	ug/kg
Endosulfan II	< 9.6	9.6	ug/kg
alpha-BHC	< 9.6	9.6	ug/kg
beta-BHC	< 9.6	9.6	ug/kg
gamma-BHC (Lindane)	< 9.6	9.6	ug/kg
delta-BHC	< 9.6	9.6	ug/kg
Endosulfan sulfate	< 9.6	9.6	ug/kg
Endrin	< 9.6	9.6	ug/kg
Endrin aldehyde	< 9.6	9.6	ug/kg
Heptachlor	< 9.6	9.6	ug/kg
Heptachlor epoxide	< 9.6	9.6	ug/kg
Methoxychlor	< 9.6	9.6	ug/kg
Toxaphene	< 960	960	ug/kg

Surrogate Recovery Data

Compound	%Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	71.0	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/23/03	Date Aı	nalyzed:	12/23/03	Analy	ed by:	AB2
Arsenic, As				1920		1920		ug/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 36 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-009; 1L0331215S04

Barium, Ba	15600	0 1920	ug/kg
Cadmium, Cd	142	96.2	ug/kg
Chromium, Cr	< 4810	4810	ug/kg
Lead, Pb	< 1920	1920	ug/kg
Selenium, Se	< 962	962	ug/kg
Silver, Ag	< 962	962	ug/kg
Copper, Cu	< 1920	1920	ug/kg
Zinc, Zn	7120	1920	ug/kg
Phosphorus, as P	30800	1920	ug/kg

Mercury (Hg)

Method(s): 7471A	Date A	nalyzed:	12/29/03	Analyz	ed by:	SM	
Mercury, Hg		< 190		190		ug/kg	

COD - Soil

Method(s): 410.4	Date A	nalyzed:	12/19/03		Analyz	ed by:	SM
COD		25000		38		M	IG/KG

Walkley-Black TOC

Method(s): WB	Date A	12/23/03 An		Analyz	yzed by: S			
Carbon, Total Organic, TOC		1.8		0.2			%	ì

Oil & Grease (FOG-HEM)

Method(s): 3540C, 1664-HEM	Date Analyzed:	12/29/03	Analyzed	l by:	SM
Oil/Grease	70	1.0		n	ng/kg

Oil & Grease (FOG)

Method(s): 3540C, 1664	Date Analyzed:	12/24/03	3 Analyz	ed by:	SM
Oil/Grease	< 1.0		1.0		mg/kg

Nitrogen-Kjeldahl

Method(s): 351.3	Date Analyzed:	12/29/03	Analyzed by:	SM
Nitrogen, Total Kjeldahl (TKN)	700	1.9		mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 37 of 38

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5523-009; 1L0331215S04

Nitrogen-Ammonia

Method(s):350.2Date Analyzed:12/29/03Analyzed by:SMNitrogen, Ammonia (as N)520.19mg/kg

Project: LSCWQM, 03 Report Number: 03-5523-1 Page: Page 38 of 38

Notes:

E: Exceedance of acceptable limit MDL: Method detection limit

mg/kg: milligram per kilogram B: Analyte detected in both the sample and the Laboratory Method Blank

mg/L:milligram per literDIL:Diluted out (below level of detection)ug/kg:microgram per kilogramQ:Sample held beyond acceptable holding time

ug/L: microgram per liter
 N/A: Not applicable
 PQL: Practical quantitation level; lowest level of reportable detection for this sample
 The laboratory analysis was from an unpreserved or improperly preserved sample.

ND: None detected or less than PQL The data may not be accurate

H: result higher than the High Limit
 L: result lower than the Low Limit
 MI: Matrix interferences prevent accurate determination
 DUP: Values confirmed by duplicate analysis of sample

Report of Analytical Services

Environmental Consult. & Tech

Attn: Karen Reaume

2250 Genoa Business Park Drive

Suite 130

Brighton, MI 48114

RTI Project#: 03-5622 01/08/04 **Date Reported: Date Completed:** 01/08/04 **Date Received:** 12/24/03

PO#:

Fax: 810-494-5059 Report Number: 03-5622-1

Project Title: COD, TOC, O&G, TPH, TKN, NH3, TP, Pesticide, 8082- PCB's, PNA, Metals

Project Description: 4 Sediment Samples Project Name/#: Lake Orion; LSC W&MP

Project Remarks:

Sample Summary

	Sample ID	RTI Sample#	Sample Matrix	Date Collected
1	IL023122-S02	03-5622-001	Sediment	12/23/03
2	IL023122-S01	03-5622-002	Sediment	12/23/03
3	IL023122-S03	03-5622-003	Sediment	12/23/03
4	IL023122-SDUP	03-5622-004	Sediment	12/23/03

Approved by :	Date:	

David Vesey, Laboratory Manager, Environmental

The data and information presented herein, while not guaranteed, are to the best of our knowledge accurate and true. No warranty or guarantee implied or expressed is made regarding these analytical results, since securing and properly preserving representative samples and since sample custody chains are beyond RTI control. The results provided by RTI are neither intended to suggest product merchantability, nor for use in infringement of any existing patent. RTI will not assume any liability or responsibility for any such infringement. Alteration or reproduction other than in its entirety is not authorized by RTI Laboratories, Inc.

RESULTS OF ANALYSIS

Client: Environmental Consult. & Tech RTI Project#: 03-5622

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 2 of 18

Analyte Result PQL Units

Sample ID: 03-5622-001; IL023122-S02

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	01/05/04	Analyzed by: JG3
Acenaphthene	< 290	290	ug/kg
Acenaphthylene	< 290	290	ug/kg
Anthracene	< 290	290	ug/kg
Benzo(a)anthracene	< 290	290	ug/kg
Benzo(a)pyrene	< 290	290	ug/kg
Benzo(b)fluoranthene	< 290	290	ug/kg
Benzo(ghi)Perylene	< 290	290	ug/kg
Benzo(k)fluoranthene	< 290	290	ug/kg
Chrysene	< 290	290	ug/kg
Dibenzo(a,h)anthracene	< 290	290	ug/kg
Fluoranthene	< 290	290	ug/kg
Fluorene	< 290	290	ug/kg
Indeno(1,2,3-cd)pyrene	< 290	290	ug/kg
2-Methylnaphthalene	< 290	290	ug/kg
Naphthalene	< 290	290	ug/kg
Phenanthrene	< 290	290	ug/kg
Pyrene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	43.0	30 - 115	
Nitrobenzene-d5 (surr.)	47.0	23 - 120	
Terphenyl-d14 (surr.)	32.0	18 - 137	

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed: 01/05/0	4 Analyze	ed by: JG3
Aldrin	< 12	12	ug/kg
Dieldrin	< 12	12	ug/kg
Chlordane(Total)	< 59	59	ug/kg
4,4'-DDT	< 12	12	ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 3 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-001: IL 023122-S02

Sample ID: 03-5622-001; IL023122-S02			
4,4'-DDE	< 12	12	ug/kg
4,4'-DDD	< 12	12	ug/kg
Endosulfan I	< 12	12	ug/kg
Endosulfan II	< 12	12	ug/kg
alpha-BHC	< 12	12	ug/kg
beta-BHC	< 12	12	ug/kg
gamma-BHC (Lindane)	< 12	12	ug/kg
delta-BHC	< 12	12	ug/kg
Endosulfan sulfate	< 12	12	ug/kg
Endrin	< 12	12	ug/kg
Endrin aldehyde	< 12	12	ug/kg
Heptachlor	< 12	12	ug/kg
Heptachlor epoxide	< 12	12	ug/kg
Methoxychlor	< 12	12	ug/kg
Toxaphene	< 590	590	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	73.0	30 - 115	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed: 01/05/0	4 Analyzed	l by: JG3
Aroclor 1016	< 120	120	ug/kg
Aroclor 1221	< 120	120	ug/kg
Aroclor 1232	< 120	120	ug/kg
Aroclor 1242	< 120	120	ug/kg
Aroclor 1248	< 120	120	ug/kg
Aroclor 1254	< 120	120	ug/kg
Aroclor 1260	< 120	120	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	73	30 - 115	

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 4 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-001; IL023122-S02

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date Analyzed:	12/30/03	Analyzed by:	AB2
Arsenic, As			3100	1200		ug/kg
Barium, Ba			20000	1200		ug/kg
Cadmium, Cd			120	59		ug/kg
Chromium, Cr			5800	2900		ug/kg
Lead, Pb			8500	1200		ug/kg
Selenium, Se			< 590	590		ug/kg
Silver, Ag			< 590	590		ug/kg
Copper, Cu			5100	1200		ug/kg
Zinc, Zn			19000	1200		ug/kg

Mercury (Hg)

Method(s): /4/1A	Date Analyzed:	12/29/03	Analyzed by:	SM
Mercury, Hg	< 120	120		ug/kg

Phosphorus

Method(s): 3050, 6020	Date Prepared:	12/29/03 D	Date Analyzed:	12/30/03	Analyz	ed by:	AB2	
Phosphorus, P			180		15		mg/kg	

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	01/07/04		Analyz	ed by:	SM	
Carbon, Total Organic, TOC		0.7		0.1			%	ı

COD - Soil

Method(s): 410.4	Date Ar	nalyzed:	01/07/04		Analyze	d by:	SM	
COD		16000		24		M	IG/KG	

Nitrogen, Total Kjeldahl (TKN) - Soil

Method(s): 351.3	Date A	nalyzed:	01/07/04		Analyze	ed by:	SM	
Nitrogen, Total Kjeldahl, TKN		313		1		M.	1G/KG	

Nitrogen-Ammonia

Method(s): 350.2	Date Analyzed:	01/07/04	Analyzed by:	SM
Nitrogen, Ammonia (as N)	26	0.12		mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 5 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-001; IL023122-S02

Oil & Grease (FOG-HEM)

 Method(s):
 3540C, 1664-HEM
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 24
 1.2
 mg/kg

Oil & Grease (FOG)

 Method(s):
 3540C, 1664
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 < 1.2</td>
 1.2
 mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 6 of 18

Analyte Result PQL Units

Sample ID: 03-5622-002; IL023122-S01

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	01/05/04 Analy	zed by: JG3
Acenaphthene	< 290	290	ug/kg
Acenaphthylene	< 290	290	ug/kg
Anthracene	< 290	290	ug/kg
Benzo(a)anthracene	< 290	290	ug/kg
Benzo(a)pyrene	< 290	290	ug/kg
Benzo(b)fluoranthene	< 290	290	ug/kg
Benzo(ghi)Perylene	< 290	290	ug/kg
Benzo(k)fluoranthene	< 290	290	ug/kg
Chrysene	< 290	290	ug/kg
Dibenzo(a,h)anthracene	< 290	290	ug/kg
Fluoranthene	< 290	290	ug/kg
Fluorene	< 290	290	ug/kg
Indeno(1,2,3-cd)pyrene	< 290	290	ug/kg
2-Methylnaphthalene	< 290	290	ug/kg
Naphthalene	< 290	290	ug/kg
Phenanthrene	< 290	290	ug/kg
Pyrene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	46.0	30 - 115	
Nitrobenzene-d5 (surr.)	47.0	23 - 120	
Terphenyl-d14 (surr.)	53.0	18 - 137	

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	01/05/04	Analyzed	l by: JG3
Aldrin	< 12	1	2	ug/kg
Dieldrin	< 12	1	2	ug/kg
Chlordane(Total)	< 59	5	19	ug/kg
4,4'-DDT	< 12	1	2	ug/kg
4,4'-DDE	< 12	1	2	ug/kg
4,4'-DDD	< 12	1	2	ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 7 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-002; IL023122-S01

Sample ID: 03-3022-002, IL023122-301			
Endosulfan I	< 12	12	ug/kg
Endosulfan II	< 12	12	ug/kg
alpha-BHC	< 12	12	ug/kg
beta-BHC	< 12	12	ug/kg
gamma-BHC (Lindane)	< 12	12	ug/kg
delta-BHC	< 12	12	ug/kg
Endosulfan sulfate	< 12	12	ug/kg
Endrin	< 12	12	ug/kg
Endrin aldehyde	< 12	12	ug/kg
Heptachlor	< 12	12	ug/kg
Heptachlor epoxide	< 12	12	ug/kg
Methoxychlor	< 12	12	ug/kg
Toxaphene	< 590	590	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	79.0	30 - 115	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed:	01/05/04	Analyzed by:	JG3
Aroclor 1016	< 120	120		ug/kg
Aroclor 1221	< 120	120		ug/kg
Aroclor 1232	< 120	120		ug/kg
Aroclor 1242	< 120	120		ug/kg
Aroclor 1248	< 120	120		ug/kg
Aroclor 1254	< 120	120		ug/kg
Aroclor 1260	< 120	120		ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	79	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date Anal	lyzed:	12/30/03	Anal	yzed by:	AB2
Arsenic, As				4400		1200		ug/kg

Client:Environmental Consult. & TechRTI Project#:03-5622Project:Lake Orion, LSC W&MPReport Number:03-5622-1Page:Page:Page 8 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-002; IL023122-S01

•			
Barium, Ba	14000	1200	ug/kg
Cadmium, Cd	96	59	ug/kg
Chromium, Cr	2900	2900	ug/kg
Lead, Pb	31000	1200	ug/kg
Selenium, Se	< 590	590	ug/kg
Silver, Ag	< 590	590	ug/kg
Copper, Cu	3500	1200	ug/kg
Zinc, Zn	21000	1200	ug/kg

Mercury (Hg)

Method(s): 7471A	Date An	nalyzed:	12/29/03	Ana	lyzed by:	SM	
Mercury, Hg		< 120		120		ug/kg	

Phosphorus

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date Analyzed:	12/30/03	Analyzed by:	AB2
Phosphorus, P			200	15		mg/kg

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	01/07/04	Analyz	ed by:	SM	
Carbon, Total Organic, TOC		0.3		0.1		%	

COD - Soil

Method(s): 410.4	Date Analyzed: 01	/07/04	Analyzed by:	SM
COD	9300	24	N	//////////////////////////////////////

Nitrogen, Total Kjeldahl (TKN) - Soil

Method(s): 351.3	Date Analyz	ed: 01/07/0	4	Analyz	ed by:	SM
Nitrogen, Total Kjeldahl, TKN	11	6	1		M	lG/KG

Nitrogen-Ammonia

Method(s): 350.2	Date Analyzed:	01/07/04	Analyze	ed by:	SM
Nitrogen, Ammonia (as N)	12	(0.12		mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 9 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-002; IL023122-S01

Oil & Grease (FOG-HEM)

 Method(s):
 3540C, 1664-HEM
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 47
 1.2
 mg/kg

Oil & Grease (FOG)

 Method(s):
 3540C, 1664
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 < 1.2</td>
 1.2
 mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 10 of 18

Analyte Result PQL Units

Sample ID: 03-5622-003; IL023122-S03

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	01/05/04 A	Analyzed by: JG3
Acenaphthene	< 280	280	ug/kg
Acenaphthylene	< 280	280	ug/kg
Anthracene	< 280	280	ug/kg
Benzo(a)anthracene	< 280	280	ug/kg
Benzo(a)pyrene	< 280	280	ug/kg
Benzo(b)fluoranthene	< 280	280	ug/kg
Benzo(ghi)Perylene	< 280	280	ug/kg
Benzo(k)fluoranthene	< 280	280	ug/kg
Chrysene	< 280	280	ug/kg
Dibenzo(a,h)anthracene	< 280	280	ug/kg
Fluoranthene	< 280	280	ug/kg
Fluorene	< 280	280	ug/kg
Indeno(1,2,3-cd)pyrene	< 280	280	ug/kg
2-Methylnaphthalene	< 280	280	ug/kg
Naphthalene	< 280	280	ug/kg
Phenanthrene	< 280	280	ug/kg
Pyrene	< 280	280	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	37.0	30 - 115	
Nitrobenzene-d5 (surr.)	43.0	23 - 120	
Terphenyl-d14 (surr.)	31.0	18 - 137	

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed: 01/05/0	4 Analyzed by	: JG3
Aldrin	< 11	11	ug/kg
Dieldrin	< 11	11	ug/kg
Chlordane(Total)	< 57	57	ug/kg
4,4'-DDT	< 11	11	ug/kg
4,4'-DDE	< 11	11	ug/kg
4,4'-DDD	< 11	11	ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 11 of 18

Analyte Result PQL Units

 $continued \ from \ previous \ page...$

Sample ID: 03-5622-003: IL 023122-S03

Sample ID: 03-5622-003; IL023122-803			
Endosulfan I	< 11	11	ug/kg
Endosulfan II	< 11	11	ug/kg
alpha-BHC	< 11	11	ug/kg
beta-BHC	< 11	11	ug/kg
gamma-BHC (Lindane)	< 11	11	ug/kg
delta-BHC	< 11	11	ug/kg
Endosulfan sulfate	< 11	11	ug/kg
Endrin	< 11	11	ug/kg
Endrin aldehyde	< 11	11	ug/kg
Heptachlor	< 11	11	ug/kg
Heptachlor epoxide	< 11	11	ug/kg
Methoxychlor	< 11	11	ug/kg
Toxaphene	< 570	570	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	60.0	30 - 115	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed:	01/05/04 A	nalyzed by:	JG3
Aroclor 1016	< 110	110		ug/kg
Aroclor 1221	< 110	110		ug/kg
Aroclor 1232	< 110	110		ug/kg
Aroclor 1242	< 110	110		ug/kg
Aroclor 1248	< 110	110		ug/kg
Aroclor 1254	< 110	110		ug/kg
Aroclor 1260	< 110	110		ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	60	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date An	alyzed:	12/30/03	Analy	zed by:	AB2
Arsenic, As				6100		1100		ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 12 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-003; IL023122-S03

Barium, Ba	24000	1100	ug/kg
Cadmium, Cd	110	57	ug/kg
Chromium, Cr	10000	2800	ug/kg
Lead, Pb	9100	1100	ug/kg
Selenium, Se	< 570	570	ug/kg
Silver, Ag	< 570	570	ug/kg
Copper, Cu	9400	1100	ug/kg
Zinc, Zn	26000	1100	ug/kg

Mercury (Hg)

Method(s): 7471A	Date Analyz	ed: 12/29/03	3 Analyz	ed by:	SM
Mercury, Hg	< 11	0	110		ug/kg

Phosphorus

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date Analyzed:	12/30/03	Analyze	ed by:	AB2
Phosphorus, P			240	1-	4		mg/kg

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	01/07/04	Analy	zed by:	SM	
Carbon, Total Organic, TOC		0.3		0.1		%	ı

COD - Soil

Method(s): 410.4	Date Analyzed:	01/07/04	Analyzed by:	SM
COD	7500	23	N	MG/KG

Nitrogen, Total Kjeldahl (TKN) - Soil

Method(s): 351.3	Date Analyzed:		d: 01/07/04 Analyz		SM
Nitrogen, Total Kjeldahl, TKN	157		1	M	G/KG

Nitrogen-Ammonia

Method(s): 350.2	Date Analyzed:	01/07/04	Analyzed by:	SM
Nitrogen, Ammonia (as N)	14	0.11		mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 13 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-003; IL023122-S03

Oil & Grease (FOG-HEM)

 Method(s):
 3540C, 1664-HEM
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 34
 1.1
 mg/kg

Oil & Grease (FOG)

 Method(s):
 3540C, 1664
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 < 1.1</td>
 1.1
 mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 14 of 18

Analyte Result PQL Units

Sample ID: 03-5622-004; IL023122-SDUP

8270 PNA Soil

Method(s): 3545, 8270	Date Analyzed:	01/05/04 Analy	zed by: JG3
Acenaphthene	< 290	290	ug/kg
Acenaphthylene	< 290	290	ug/kg
Anthracene	< 290	290	ug/kg
Benzo(a)anthracene	< 290	290	ug/kg
Benzo(a)pyrene	< 290	290	ug/kg
Benzo(b)fluoranthene	< 290	290	ug/kg
Benzo(ghi)Perylene	< 290	290	ug/kg
Benzo(k)fluoranthene	< 290	290	ug/kg
Chrysene	< 290	290	ug/kg
Dibenzo(a,h)anthracene	< 290	290	ug/kg
Fluoranthene	< 290	290	ug/kg
Fluorene	< 290	290	ug/kg
Indeno(1,2,3-cd)pyrene	< 290	290	ug/kg
2-Methylnaphthalene	< 290	290	ug/kg
Naphthalene	< 290	290	ug/kg
Phenanthrene	< 290	290	ug/kg
Pyrene	< 290	290	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
2-Fluorobiphenyl (Surr)	41.0	30 - 115	
Nitrobenzene-d5 (surr.)	42.0	23 - 120	
Terphenyl-d14 (surr.)	47.0	18 - 137	

Chlorinated Pesticides

Method(s): 3545, 8081	Date Analyzed:	01/05/04	Analyzed by:	JG3
Aldrin	< 12	12		ug/kg
Dieldrin	< 12	12		ug/kg
Chlordane(Total)	< 58	58		ug/kg
4,4'-DDT	< 12	12		ug/kg
4,4'-DDE	< 12	12		ug/kg
4,4'-DDD	< 12	12		ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 15 of 18

Analyte Result PQL Units

 $continued \ from \ previous \ page...$

Sample ID: 03-5622-004: IL023122-SDUP

Sample ID: 03-3622-004; IL023122-SDUP			
Endosulfan I	< 12	12	ug/kg
Endosulfan II	< 12	12	ug/kg
alpha-BHC	< 12	12	ug/kg
beta-BHC	< 12	12	ug/kg
gamma-BHC (Lindane)	< 12	12	ug/kg
delta-BHC	< 12	12	ug/kg
Endosulfan sulfate	< 12	12	ug/kg
Endrin	< 12	12	ug/kg
Endrin aldehyde	< 12	12	ug/kg
Heptachlor	< 12	12	ug/kg
Heptachlor epoxide	< 12	12	ug/kg
Methoxychlor	< 12	12	ug/kg
Toxaphene	< 580	580	ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	64.0	30 - 115	

8082 Soil PCB

Method(s): 3545, 8082	Date Analyzed:	01/05/04	Analyzed by:	JG3
Aroclor 1016	< 120	120		ug/kg
Aroclor 1221	< 120	120		ug/kg
Aroclor 1232	< 120	120		ug/kg
Aroclor 1242	< 120	120		ug/kg
Aroclor 1248	< 120	120		ug/kg
Aroclor 1254	< 120	120		ug/kg
Aroclor 1260	< 120	120		ug/kg

Surrogate Recovery Data

Compound	% Recovery	Acceptable Limits(%)	Qualifier
Decachlorobiphenyl (Surr)	64	30 - 115	

Total Metals

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date A	nalyzed:	12/30/03		Analyze	d by:	AB2
Arsenic, As				4000		1200			ug/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 16 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-004; IL023122-SDUP

r i i i i i i i i i i i i i i i i i i i			
Barium, Ba	11000	1200	ug/kg
Cadmium, Cd	76	58	ug/kg
Chromium, Cr	4300	2900	ug/kg
Lead, Pb	43000	1200	ug/kg
Selenium, Se	< 580	580	ug/kg
Silver, Ag	< 580	580	ug/kg
Copper, Cu	4500	1200	ug/kg
Zinc, Zn	18000	1200	ug/kg

Mercury (Hg)

Method(s): 7471A	Date An	nalyzed:	12/29/03	Ana	lyzed by:	SM	
Mercury, Hg		< 120		120		ug/kg	

Phosphorus

Method(s): 3050, 6020	Date Prepared:	12/29/03	Date Analyzed:	12/30/03	Analyze	d by: AB2
Phosphorus, P			100	1	15	mg/kg

Walkley-Black TOC

Method(s): WB	Date A	nalyzed:	01/07/04	Analy	zed by:	SM	
Carbon, Total Organic, TOC		0.3		0.1		%	ı

COD - Soil

Method(s): 410.4	Date Analyzed:	01/07/04	Analyzed by:	SM
COD	7600	23	N	MG/KG

Nitrogen, Total Kjeldahl (TKN) - Soil

Method(s): 351.3	Date Analyzed:	01/07/04	Analyz	ed by:	SM
Nitrogen, Total Kjeldahl, TKN	112		1	M	G/KG

Nitrogen-Ammonia

Method(s): 350.2	Date Analyzed:	01/07/04	Analyze	ed by:	SM
Nitrogen, Ammonia (as N)	12	(0.12		mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 17 of 18

Analyte Result PQL Units

continued from previous page...

Sample ID: 03-5622-004; IL023122-SDUP

Oil & Grease (FOG-HEM)

 Method(s):
 3540C, 1664-HEM
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 70
 1.2
 mg/kg

Oil & Grease (FOG)

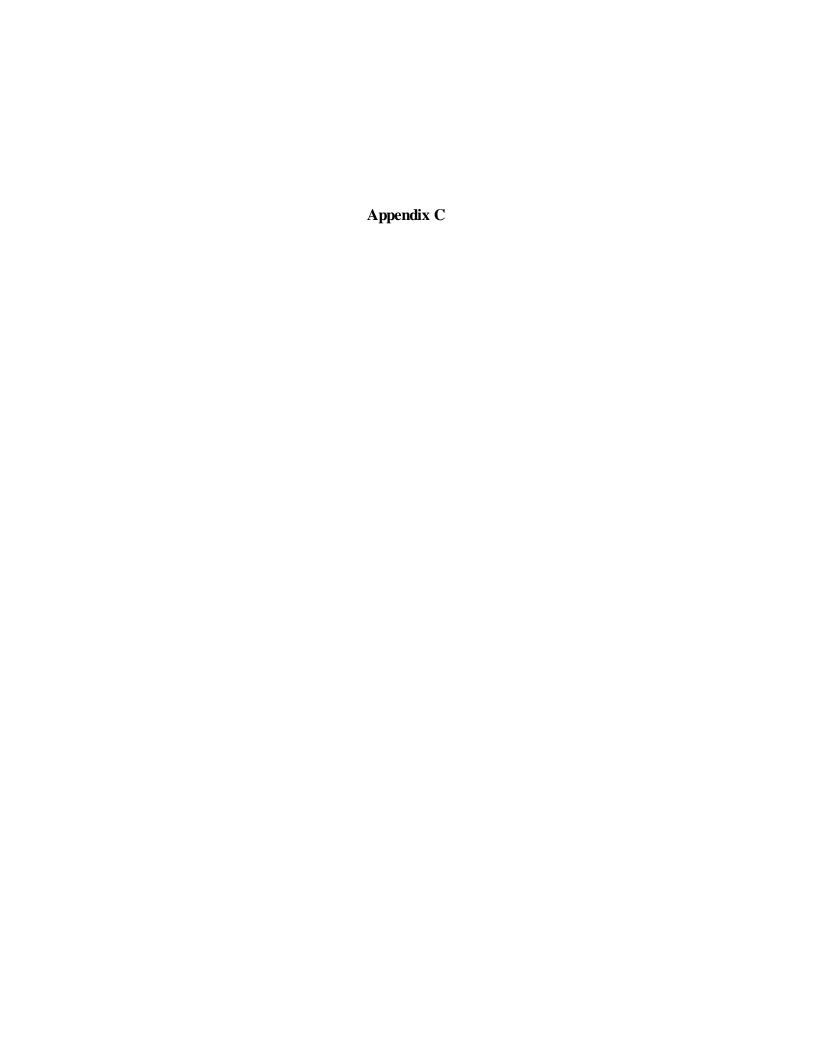
 Method(s):
 3540C, 1664
 Date Analyzed:
 01/07/04
 Analyzed by:
 SM

 Oil/Grease
 < 1.2</td>
 1.2
 mg/kg

Project: Lake Orion, LSC W&MP Report Number: 03-5622-1 Page: Page 18 of 18

Notes:

E: Exceedance of acceptable limit MDL: Method detection limit


mg/kg: milligram per kilogram B: Analyte detected in both the sample and the Laboratory Method Blank

mg/L:milligram per literDIL:Diluted out (below level of detection)ug/kg:microgram per kilogramQ:Sample held beyond acceptable holding time

ug/L: microgram per liter
 N/A: Not applicable
 PQL: Practical quantitation level; lowest level of reportable detection for this sample
 The laboratory analysis was from an unpreserved or improperly preserved sample.

ND: None detected or less than PQL The data may not be accurate

H: result higher than the High Limit
 L: result lower than the Low Limit
 MI: Matrix interferences prevent accurate determination
 DUP: Values confirmed by duplicate analysis of sample

Results of Ten-Day Hyalella azteca and Chironomus tentans Toxicity Tests with Whole Sediments from Environmental Consulting & Technology (ECT) Samples Received March 31, 2004

Prepared by

ASci Corporation
Environmental Testing Laboratory
4444 Airpark Boulevard
Duluth, Minnesota 55811-5712

Submitted to

Environmental Consulting & Technology 719 Griswold Street Suite 520 Detroit, MI 48226

313-963-6600

Submitted April 2004

REPORT APPROVAL

Name (signed):	Date: 4/6	20/04
Name (typed):	Kurt Anderson	
Title:	Senior Biologist	
	* * * *	
Name (signed):	Nataha Syllholm Date: 4/21	104
Name (typed):	Natasha Lyckholm	
Title:	Biologist	

TABLE OF CONTENTS

INTRODUCT	TION
STUDY SUM	MARY
METHODS A	AND MATERIALS 1
Genera	al Test Methods
Test O	organism Culturing, Holding, and Acclimation
Overly	ring Water Characteristics
Expos	ure System
Test P	erformance
Treatn	nent of Results
RESULTS	
Overly	ving Water Characteristics
Biolog	gical Exposure Results
CONCLUSIO	ONS
REFERENCE	ES
TABLE 1.	Flow Rates (ml/min) of Overlying Water and Daily Turnover Rates to ECT Sediments Test Chambers During Ten-Day <i>Hyalella</i> and <i>Chironomus</i> Exposures
TABLE 2.	Overlying Water Temperature Values (°C) for ECT Sediments During Ten-Day <i>Hyalella</i> Exposures
TABLE 3.	Overlying Water Temperature Values (°C) for ECT Sediments During Ten-Day Chironomus Exposures
TABLE 4.	Overlying Water Dissolved Oxygen Values (mg/L) for ECT Sediments During Ten-Day <i>Hyalella</i> Exposures

Table of Contents (cont.)

- TABLE 5. Overlying Water Dissolved Oxygen Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures
 TABLE 6. Overlying Water pH Values for ECT Sediments During Ten-Day Hyalella Exposures
 TABLE 7. Overlying Water pH Values for ECT Sediments During Ten-Day Chironomus Exposures
- TABLE 8. Overlying Water Conductivity Values (μmhos/cm) for ECT Sediments During Ten-Day Hyalella Exposures
- TABLE 9. Overlying Water Conductivity Values (μmhos/cm) for ECT Sediments During Ten-Day *Chironomus* Exposures
- TABLE 10. Overlying Water Alkalinity Values (mg/L) for ECT Sediments During Ten-Day *Hyalella* Exposures
- TABLE 11. Overlying Water Alkalinity Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures
- TABLE 12. Overlying Water Hardness Values (mg/L) for ECT Sediments During Ten-Day *Hyalella* Exposures
- TABLE 13. Overlying Water Hardness Values (mg/L) for ECT Sediments During Ten-Day *Chironomus* Exposures
- TABLE 14. Overlying Water Ammonia Values (mg/L) for ECT Sediments During Ten-Day *Hyalella* Exposures
- TABLE 15. Overlying Water Ammonia Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures
- TABLE 16. *Hyalella* Survival Results and *Chironomus* Survival and Growth Results Following Ten-Day Exposure to ECT Sediments

Table of Contents (cont.)

TABLE 17. Precision of Chironomus 96-Hour NaCl Reference Toxicant Testing

TABLE 18. Precision of Hyalella 96-Hour NaCl Reference Toxicant Testing

APPENDIX A -- Chain of Custody Forms

APPENDIX B -- Raw Data Sheets

APPENDIX C -- Statistical Analyses

APPENDIX D -- Post-Carbon Water Analyses

At the request of Environmental Consulting and Technology (ECT), ASci-Environmental Testing Laboratory (ASci-ETL) performed toxicity tests with bulk sediment samples (LV-01, LV-02, SL-02, and SL-03) collected from natural waters in the state of Michigan. The 10-day tests were performed to measure the toxicity of selected sediment samples to *Hyalella azteca* (amphipod) and larval *Chironomus tentans* (midge). The *Hyalella* test endpoint was survival, and the *Chironomus* endpoints were survival and growth (dried and ash-free dried weight (AFDW)).

STUDY SUMMARY

The table below summarizes survival and growth (as weight) for the ECT sediments and the West Bearskin control. None of the ECT sediments caused statistically significant decreases in either organism survival or growth when compared to the West Bearskin reference control.

Endpoint	West Bearskin	LV-01	LV-02	SL-02	SL-03
H. azteca Survival (%)	98	94	93	94	95
C tentans Survival (%)	98	89	88	99	93
C. tentans Dried Weight (mg/org)	1.09	1.48	1.51	1.64	2.22
C. tentans AFDW (mg/org)	0.82	1.19	1.11	1.04	1.15

METHODS AND MATERIALS

General Test Methods

Exposures to determine the toxicity of whole sediment samples from ECT were performed following suggested United States Environmental Protection Agency (USEPA)/USACE methods (USEPA/USACE 1998). Ten-day tests exposing *Hyalella* and *Chironomus* were conducted in a manner to determine the effect of each test sediment on organism survival and *Chironomus* growth. Effect was determined by comparison to organism performance following exposure to the selected reference site sediment. Exposure conditions were maintained using an intermittent flow system for renewal of overlying water. Following are detailed descriptions of test performance, test results, data reduction, and results interpretation.

Test Organism Culturing, Holding, and Acclimation

Hyalella and Chironomus were obtained from Environmental Consulting and Testing (ECT), Superior, Wisconsin. Culture conditions were maintained according to suggested EPA methods (EPA 2000). The Hyalella were cultured in a static-renewal system with overlying water renewed twice per week, and the Chironomus were cultured in a recirculating system. Culture temperature is maintained near the test temperature of 23°C.

The batches of test organisms were hand delivered to ASci-ETL. Upon arrival at ASci-ETL, the batches of organisms were logged in and quarantined in glass containers. Diets during holding were the same as used during the toxicity exposures. The organisms were not crowded or subjected to daily temperature changes greater than 3°C per day during holding. The holding tanks were lightly aerated during the pre-test period. At test initiation the *Hyalella* were 12 to 14 days old. The *Chironomus* were third instar larvae or younger.

Page 6 of 86

<u> A</u>Scî

Overlying Water Characteristics

Overlying water supplied to the test chambers was dechlorinated City of Duluth tap water. The City draws its water from Lake Superior. The tap water was dechlorinated and metals were removed with treatment through two, 1.5 cubic-foot activated carbon beds. The most recent

chemical analyses of the post-carbon tap water are contained in Appendix D.

Exposure System

Sediment from each site tested included eight replicates for each species. Exposure chambers were 300-ml Berzilius® glass beakers with 1.5 cm diameter side-wall ports screened with a stainless steel mesh. The ports were located approximately 8 cm above the base of the beaker. The screens were fixed to the beakers using aquarium-grade silicone adhesive. Sixteen replicate test chambers (eight for each species) of each sediment exposure were held in a single all glass 15-L aquarium constructed with silicone adhesive. The 12-L aquaria were fitted with a self-starting siphon drain positioned 10 cm above the base of the tank and provided a water volume of 11 liters.

Dechlorinated tap water was fed to a 5-gallon stainless steel headbox where the water was heated and then aerated to reduce supersaturated levels of dissolved gasses. The water was gravity fed to an intermediate polyethylene delivery tank. The intermediate tank contained a submersible pump controlled by a timer. The timer was set to activate the pump at 4-hour intervals (6 times per day). The pump was activated for 5 minutes to deliver an appropriate volume of overlying water to the test system. This volume was rapidly pumped to splitter tubes that delivered fresh overlying water to each holding aquarium. The configuration resulted in two turnovers of overlying water per day. Test temperature $(23^{\circ} \pm 1^{\circ}C)$ was maintained using a constant temperature water bath.

Page 7 or 86

Test photoperiod was maintained at 16 hours light and 8 hours darkness per day. Light was supplied by cool-white fluorescent bulbs at an intensity of 50 to 100 ft-candles.

Test Performance

Sediment samples were collected by ECT personnel December 13,2003 through January 22, 2004. The samples were delivered to ASci-ETL by express courier on March 31, 2004. The samples were labeled as LV-01, LV-02, SL-02, and SL-03. The Chain of Custody forms were completed upon the samples' arrival. Sample log-in included visual inspection of the shipping coolers, sample container integrity, sediment temperature and appearance. Following log-in procedures, the samples were stored in darkness at 1-4°C until use. Appendix A contains a copy of the Chain of Custody forms.

Laboratory control sediment was collected on July 7, 2003, from West Bearskin Lake, located in Cook County, Minnesota. The sediment sample (5-gallon) was placed in two new polyethylene containers and cooled immediately. Upon arrival at the laboratory, the sample was logged-in and stored under refrigeration (1-4°C) until use. Before use in the tests, the laboratory control sediment was thoroughly homogenized, then sieved through a 2-mm screen to remove indigenous organisms.

The toxicity exposures with both test species were performed simultaneously. Twenty-four hours before toxicity test initiation each sample was thoroughly homogenized with a stainless steel auger, and 100-ml portions were transferred to each of the 16 designated replicate exposure chambers. Each set of replicate test chambers were then placed into an assigned 15-L holding chamber containing 11 L of overlying water. The toxicity tests were initiated approximately 24 hours later, after the sediments were allowed to settle. The organisms were introduced into the test system on April 2, 2004.

To start the tests, ten *Hyalella* (12 to 14 days old), and ten *Chironomus* (third instar or younger) were impartially distributed to designated intermediate holding cups. The organisms were handled with a wide-bore glass pipette. The organisms were then transferred from the intermediate vessels to an assigned test replicate.

At test initiation and each daily observation, head flow rate was measured, and any flows found to be outside the range of \pm 10% from target flow were adjusted. Measurements of overlying water pH, total ammonia, conductivity, hardness, and alkalinity were performed on day 0 and day 10. The temperature and dissolved oxygen were measured daily. The total residual chlorine concentration of the post-carbon water was measured periodically during the test to check for breakthrough.

The test organisms were fed a diet based on EPA methods and recommendations from the culturing laboratory (Aquatic Biosystems). The *Hyalella* were fed a mixture of yeast, Cerophyl®, and fermented trout chow (YCT) prepared to contain 1,800 mg/L total solids. *Chironomus* test chambers received a Tetrafin® slurry. The slurry was prepared to contain 4 g/L total solids. Each *Chironomus* test replicate received 1.5 ml of Tetrafin® slurry daily, and each *Hyalella* test replicate received 1.0 ml of YCT daily.

The tests were terminated following 10 days of exposure. Any organisms in the overlying water were removed first. The sediments were then removed from the test chambers in a layered fashion using a gentle stream of post-carbon treated water. The sediments were collected in a US Standard #40 sieve. The contents retained on the sieve were rinsed into a white polyethylene pan, placed on a light source, and the sieved contents were searched for test organisms. Numbers of live organisms and dead organisms found were counted and recorded. Organisms not found were recorded as dead. These organisms were assumed to have died early in the exposures and the remains had decayed.

Page 9 .. 86

ASci

The live *Chironomus* from each replicate were pooled, rinsed, and placed in pre-ashed, pre-weighed aluminum weigh boats. The organisms pooled from each individual test replicate were then dried at 96°C for 23 hours. The dried, pooled organisms were then weighed to the nearest 0.01 mg to determine mean dried weights. Organisms were then ashed at 550°C for two hours, and then weighed to determine ash-free dry weight (AFDW). AFDW equals the weight of dried larvae minus weight of ashed larvae.

Any pupae that were recovered were included in survival measurements but not growth measurements. For replicates found to contain pupae, the mean weight was calculated by dividing the pooled dry weight of the replicate by the number of organisms exposed less the number of pupae recovered.

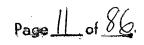
Treatment of Results

The cumulative number of surviving organisms for each test sediment exposure was compared to cumulative survival of organisms exposed to the selected reference site sediment exposure to measure effect. The survival data were analyzed using the TOXSTAT Version 3.5 software package (West Inc., and University of Wyoming, Laramie, Wyoming). The survival data were arc-sine transformed before analysis then checked for normality and equality of variance. The appropriate parametric or non-parametric test was then performed to determine significant effect (p=0.05) as compared to the reference site results.

The growth data was not formally analyzed due to the obvious lack of effect. All test sediments had mean dried weights and ash-free dry weights greater than that of the reference control.

n-- 10 of 86

RESULTS


Overlying Water Characteristics

Headbox flow rates were measured daily. The daily values, calculated test chamber flow rates, and volume exchanges are in Table 1. The overall mean flow rate for each of the holding tanks during the test period was 9.2-9.4 ml/minute. The mean flow rate shows overlying water was renewed at a rate that averaged 2.0 tank volumes per day.

Tables 2 and 3 summarize the overlying water temperature values measured daily from the *Hyalella* and *Chironomus* exposure chambers. The range of individual temperature values was from 22.0°C to 23.2°C. All the individual values were within the proposed range of 23°C \pm 1°C. Mean test temperatures were maintained at 22.8 to 22.9°C.

Overlying water dissolved oxygen (DO) concentrations in the *Hyalella* and *Chironomus* test chambers are in Tables 4 and 5. DO values ranged from 6.2 to 8.4 mg/L during the *Hyalella* exposures. The percentage of dissolved oxygen saturation ranged from 72% to 98%. At no time was feeding suspended for the *Hyalella* exposures. DO values ranged from 4.0 to 8.4 mg/L during the *Chironomus* exposures. The percentage of dissolved oxygen saturation ranged from 47% to 98%. At no time was feeding suspended for the *Chironomus* exposures. Research cited in the USEPA 2000 sediment manual indicates *Chironomus* and *Hyalella* are not affected by oxygen depletion until DO levels drop below 2.5 mg/L.

Overlying water pHs for the *Hyalella* and *Chironomus* test chambers are in Tables 6 and 7. The pH of overlying water in the *Hyalella* and *Chironomus* exposures ranged from 7.53 to 7.96. None of the pH values were outside of the organism's physiologically tolerable range.

ASCÎ.

Tables 8 and 9 contain the overlying water conductivity values for the *Hyalella* and *Chironomus* exposures. The overall range of conductivity values for both exposures was from 126 μ mhos/cm to 402 μ mhos/cm. None of the values indicated that a significant amount of ionized material was released from the test sediments.

Tables 10 and 11 contain overlying water alkalinity values for the *Hyalella* and *Chironomus* exposures, respectively. Concentrations ranged from 18 mg/L to 192 mg/L as CaCO₃.

Tables 12 and 13 contain the overlying total hardness values for the exposures. Concentrations ranged from 42 mg/L to 186 mg/L as CaCO₃.

Tables 14 and 15 contain the results of total ammonia measurements for the exposures. Ammonia measurements ranged from < 1.0 to 3.7 mg/L.

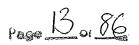
The routine chemistry values indicated the test system maintained suitable water quality to allow assessment of sediment toxicity for both test species. The levels of ammonia measured throughout the test, when compared to the corresponding pH levels, should not have caused toxicity to either test species.

Biological Exposure Results

All organisms were initially observed to burrow into all test sediments. Normal levels of organism activity were observed throughout the test.

Page 12 of 86.

Hyalella azteca Survival -


Table 16 summarizes the *Hyalella* survival results for the 10-day exposures. The laboratory control sediments (West Bearskin) supported acceptable 10-day mean survival of $98 \pm 5\%$. The test sediments had survival rates ranging from 93% to 95%.

Chironomus tentans Survival and Growth Results -

Table 16 summarizes the *Chironomus* survival results for the 10-day exposures. The laboratory control sediments (West Bearskin) supported acceptable 10-day mean survival of $98 \pm 5\%$. The test sediments had survival rates ranging from 88% to 99%.

Chironomus dried weight results are given in Table 16. Final mean dry weight for organisms exposed to the laboratory control sediment was an acceptable 1.09 ± 0.12 mg/organism. The organisms in the test sediments had dried weights ranging from 1.48-2.22 mg/organism.

Chironomus ash-free dry weight results are given in Table 16. Final mean ash-free dry weight for organisms exposed to the laboratory control sediment was an acceptable 0.82 ± 0.10 mg/organism. The organisms in the test sediments had dried weights ranging from 1.04-1.19 mg/organism.

ASci

Hyalella azteca Statistical Results -

<u>Survival Analysis</u> - The *Hyalella* survival data for the management units were compared to the West Bearskin sediment to measure effect. The data for the comparisons were non-normal and homogeneous, therefore, a Steel's test was the appropriate analysis. Results of the analysis showed that none of the test sediments caused significant (p=0.05) organism lethality when compared to the lake reference sediment results. Printouts of the analysis are contained in Appendix C.

Chironomus tentans Statistical Results -

Survival Analysis - The Chironomus survival data for the management units were compared to the West Bearskin sediment to measure effect. The data for the comparisons were non-normal and homogeneous, therefore, a Steel's test was the appropriate analysis. Results of the analysis showed that none of the test sediments caused significant (p=0.05) organism lethality when compared to the lake reference sediment results. Printouts of the analysis are contained in Appendix C.

<u>Dried Weight and Ash-free Dried Weight Analysis</u> – The dried weight and ash-free dried weight data were not formally analyzed due to the obvious lack of effect. Mean dried and ash-free dried weights for *Chironomus* exposed to all test sediments was higher than the reference control results.

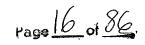
Page 14 or 86

CONCLUSIONS

The following conclusions can be drawn from the study results.

- The laboratory control sediment used for this study supported acceptable organism survival for both test species and acceptable *Chironomus* growth.
- None of the test sediments collected by ECT personnel caused significant organism mortality for either species or reductions in *Chironomus* growth.

REFERENCES


USEPA/USACE. 1998. Great Lakes Dredged Material Testing and Evaluation Manual. Final Draft.

Benoit, D.A., G. Phipps, and G.T. Ankley. 1993. A Sediment Testing Intermittent Renewal System for the Automated Renewal of Overlying Water in Toxicity Tests with Contaminated Sediments. Water Research 27:1403-1412.

West, Inc. and University of Wyoming. Laramie, Wyoming. 1996. Department of Zoology and Physiology. TOXSTAT software package version 3.5.

G.T. Ankley, M.K. Schubauer-Berigan, and P.D. Monson. Influence of pH and hardness on toxicity of ammonia to the amphipod Hyalella azteca. Reprinted from Canadian Journal of Fisheries and Aquatic Sciences. Volume 52/Number 10/1995.

Mary K. Shubauer-Berigan, Philip D. Monson, Corlis W. West, and Gerald T. Ankley. Influence of pH on the Toxicity of Ammonia to *Chironomus tentans* and *Lumbriculus variegatus*. Environmental Toxicology and Chemistry, Vol. 14, No. 4, pp.713-717, 1995.

Sediments Test Chambers During Ten-Day Hyalella and Chironomus Exposures Flow Rates (ml/min) of Overlying Water and Daily Turnover Rates to ECT TABLE 1.

							Test Day	Day						
	0		2	3	4	5	9	7	8	6	10	Mean	low	high
Head Flow Rate	320	320	316	320	320	312	316	320	316	320	320	318	312	320
Test Chamber Flow Rate	9.4	9.4	9.3	9.4	9.4	9.2	9.3	9.4	9.3	9.4	9.4	9.4	9.2	9.4
Volume Exchanges	2.0	2.0	2.0	2.0	2.0	1.9	2.0	2.0	2.0	2.0	2.0	2.0	1.9	2.0

Table 2. Overlying Water Temperature Values (oC) for ECT Sediments During Ten-Day Hyalella Exposures

SL-03	22.7	22.8	22.9	22.1	23.0	23.2	23.2	22.9	22.9	23.1	23.1	22.1	23.2	22.9
SL-02	22.6	23.0	23.0	22.1	23.0	23.0	23.2	22.8	22.9	23.1	22.9	22.1	23.2	22.9
LV-02	22.8	23.0	22.7	22.0	23.0	23.1	23.0	22.8	23.0	230	23.1	22.0	23.1	22.9
LV-01	22.7	22.9	22.7	22.1	23.0	23.2	23.1	22.8	23.0	23.0	22.9	22.1	23.2	22.9
West Bearskin	22.6	22.8	22.7	22.1	23.0	23.2	23.0	22.9	22.8	23.0	23.1	22.1	23.2	22.8
Day	0	1	2	3	4	5	9	7	8	6	10	Low	High	Mean

Overlying Water Temperature Values (oC) for Oswego Sediments During Ten-Day Chironomus Exposures Table 3.

West LV-01 LV-02 SL-02 Bearskin 22.6 22.7 22.8 22.6 22.6 22.7 22.8 22.6 23.0 22.1 22.1 22.1 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.9 23.1 23.0 23.0 23.0 22.9 22.8 22.8 22.8 22.8 23.0 23.0 23.0 23.0 23.0 23.1 23.0 23.0 23.0 23.1 23.1 23.0 23.0 23.1 23.2 23.1 23.0 23.0 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.1 22.1 22.0 23.1 23.2 23.2 23.1 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.8 23.2 23.1 23.2 23.2 <						
Bearskin 22.7 22.8 22.6 22.6 22.7 22.8 22.0 22.7 22.7 23.0 23.0 22.1 22.1 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.1 23.0 23.0 22.9 22.8 22.8 22.8 22.9 23.0 23.0 23.0 23.0 23.0 23.0 23.1 23.1 23.0 23.0 23.1 23.1 22.1 23.1 23.1 23.1 22.1 22.0 22.1 23.1 22.1 23.1 23.1 23.1 22.1 23.1 23.2 23.1 22.1 23.1 23.2 23.2 23.1 23.1 23.2 23.2 23.1 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.2 23.2 23.2 23.2 </td <td>Day</td> <td>West</td> <td>LV-01</td> <td>LV-02</td> <td>SL-02</td> <td>ST-03</td>	Day	West	LV-01	LV-02	SL-02	ST-03
22.6 22.7 22.8 22.6 22.8 22.9 23.0 23.0 22.7 22.1 22.0 23.0 23.0 23.0 23.0 23.0 23.2 23.2 23.0 23.0 23.0 23.1 23.0 23.0 22.9 22.8 22.8 22.8 23.0 23.0 23.0 23.0 23.1 23.0 23.0 23.1 23.1 23.0 23.0 23.1 23.1 23.0 23.0 23.1 23.1 22.1 23.1 23.2 23.2 23.1 23.1 23.2 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2		Bearskin				
22.8 22.9 23.0 23.0 22.1 22.1 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.1 23.0 23.0 22.9 22.8 22.8 22.8 22.9 23.0 23.0 22.9 23.0 23.0 23.0 23.0 23.1 23.0 23.0 23.1 23.1 23.1 23.0 23.1 23.1 23.1 23.1 23.2 23.1 22.1 23.1 23.2 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.1 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2	0	22.6	22.7	22.8	22.6	22.7
22.7 22.7 22.7 22.0 23.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.0 22.0 22.0 22.0 22.0 22.0 22.8 22.8 22.8 22.8 22.8 22.8 22.9 22.9 22.9 22.0 22.0 22.0 22.1 22.2 22.1 22.2 <th< td=""><td>1</td><td>22.8</td><td>22.9</td><td>23.0</td><td>23.0</td><td>22.8</td></th<>	1	22.8	22.9	23.0	23.0	22.8
22.1 22.1 22.0 22.1 23.0 23.0 23.0 23.0 23.2 23.2 23.1 23.0 23.0 22.8 22.8 22.8 22.9 22.8 22.8 22.9 23.0 23.0 23.0 23.0 23.1 23.1 23.1 23.1 22.1 22.1 22.0 22.1 23.2 23.2 23.1 23.2 22.8 23.2 23.1 23.2 22.8 23.2 23.1 23.2 23.2 23.2 23.1 23.2	2	22.7	22.7	22.7	23.0	22.9
23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.2 23.2 23.2 23.2 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.0 23.1 23.2 23.1 23.2	3	22.1	22.1	22.0	22.1	22.1
23.2 23.2 23.0 23.0 23.0 23.2 22.9 22.8 22.8 22.8 22.8 22.8 23.0 23.0 22.9 22.9 23.0 23.0 23.0 23.1 23.1 23.1 23.1 23.1 23.2 23.1 23.1 22.1 22.0 22.1 22.1 23.2 23.2 23.1 23.2 22.1 22.8 22.9 22.9 22.9 22.9	4	23.0	23.0	23.0	23.0	23.0
23.0 23.1 23.0 23.2 22.9 22.8 22.8 22.8 22.8 23.0 23.0 22.9 23.0 23.0 23.1 23.1 23.1 23.2 23.1 23.2 22.1 22.1 22.1 23.1 23.2 23.2 23.1 23.2 23.2 23.2 23.1 23.2 22.8 22.9 22.9 22.9	5	23.2	23.2	23.1	23.0	23.2
22.9 22.8 22.8 22.9 22.8 23.0 23.0 23.1 23.1 23.2 23.1 23.2 22.1 22.1 22.0 22.1 23.2 23.2 22.0 22.1 23.2 23.2 23.2 22.1 22.8 22.9 22.9 22.9	9	23.0	23.1	23.0	23.2	23.2
22.8 23.0 23.0 23.0 23.1 23.1 23.1 23.1 23.2 22.1 22.1 22.0 22.1 23.2 23.2 23.1 23.1 23.2 23.2 23.1 23.2 22.8 22.9 22.9 22.9	7	22.9	22.8	22.8	22.8	22.9
23.0 23.0 23.0 23.1 23.1 23.2 23.1 23.2 22.1 22.0 22.1 22.1 23.2 23.2 23.1 23.2 22.8 22.9 22.9 22.9	8	22.8	23.0	23.0	22.9	22.9
23.1 23.2 23.1 23.2 22.1 22.1 22.1 23.2 23.2 23.1 22.8 22.9 22.9	6	23.0	23.0	23.0	23.1	23.1
22.1 22.0 22.1 23.2 23.2 23.1 23.2 22.8 22.9 22.9 22.9	10	23.1	23.2	23.1	23.2	23.0
23.2 23.2 23.1 23.2 22.8 22.9 22.9 22.9	Low	22.1	22.1	22.0	22.1	22.1
22.9 22.9 22.9	High	23.2	23.2	23.1	23.2	23.2
	Mean	22.8	22.9	22.9	22.9	22.9

Table 4. Overlying Water Dissolved Oxygen Values (mg/L) for ECT Sediments During Ten-Day Hyalella

Exposures

SL-03	8.3	7.2	7.0	8.0	8.2	7.6	7.7	7.5	7.2	7.8	7.6	7.0	8.3	7.6
SL-02	8.4	7.0	6.9	8.1	8.2	7.4	7.2	7.4	7.1	7.8	7.3	6.9	8.4	7.5
LV-02	8.4	6.9	6.7	8.0	7.7	6.8	7.3	7.1	7.0	7.7	7.4	6.7	8.4	7.4
LV-01	8.4	6.5	6.7	6.9	7.7	6.2	6.9	9.9	7.0	8.0	7.8	6.2	8.4	7.2
West Bearskin	8.2	9.9	7.5	8.1	8.1	7.5	7.9	8.1	7.5	7.8	7.3	9.9	8.2	7.7
Day	0	1	2	e,	4	5	9	7	8	6	10	Low	High	Mean

Page 20 c. 86

Table 5. Overlying Water Dissolved Oxygen Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures

	117.004	T V7 01	00 M I	CI U	CI _03
Day	West	LV-01	70- ^T	3D-76	50-75
	Bearskin				
0	8.2	8.4	8.4	8.4	8.3
1	7.0	6.1	5.8	5.9	6.5
2	6.0	5.2	5.4	5.7	0.9
က	7.4	7.7	7.7	6.7	9.9
4	6.8	9.9	6.6	6.9	6.5
5	7.5	4.0	4.0	4.8	6.3
9	8.0	6.5	5.7	5.7	5.2
7	7.9	6.6	6.7	6.7	7.5
8	8.0	6.7	6.7	9.9	6.8
6	8.0	8.0	8.0	7.8	7.8
10	7.8	7.6	7.5	7.8	7.1
Low	0.9	4.0	4.0	4.8	5.2
High	8.2	8.4	8.4	8.4	8.3
Mean	7.5	6.7	6.6	6.6	6.8

Page 21 0186

Table 6. Overlying Water pH Values for ECT Sediments
During Ten-Day *Hyalella* Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
	Bearskin				
0	7.53	7.72	7.77	7.62	7.96
10	7.58	7.69	7.73	7.61	7.63

Table 7. Overlying Water pH Values for ECT Sediments
During Ten-Day *Chironomus* Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
	Bearskin				
0	7.53	7.72	7.77	7.62	7.96
10	7.68	7.75	7.68	7.61	7.81

ASC/

Table 8. Overlying Water Conductivity Values (umhos/cm) for ECT Sediments During Ten-Day Hyalella

Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
0	126	212	238	402	218
10	129	232	254	236	215

ASC/

Table 9. Overlying Water Conductivity Values (umhos/cm) for ECT Sediments During Ten-Day Chironomus

Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
	Bearskin				
0	126	212	238	402	218
10	130	236	248	231	220

ASC!

Table 10. Overlyi

Overlying Water Alkalinity Values (mg/L) for ECT

Sediments During Ten-Day Hyalella Exposures

SL-03	130	100
SL-02	188	192
LV-02	164	150
LV-01	108	110
West Bearskin	18	28
Day	0	10

4SC/

Table 11. Overlying Water Alkalinity Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures

Day	West	LV-01	LV-02	SL-02	ST-03
	Bearskin				
0	18	108	164	188	130
10	42	112	160	168	120

Table 12.

Overlying Water Hardness Values (mg/L) for ECT Sediments During Ten-Day Hyalella Exposures

Day	West Bearskin	LV-01	LV-02	SL-02	SL-03
0	84	120	152	166	118
10	42	114	160	146	128

ASc!

Table 13. Overlying Water Hardness Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
	Bearskin				
0	84	120	152	166	118
10	40	120	158	150	130

Table 14. Overlying Water Ammonia Values (mg/L) for ECT Sediments During Ten-Day Hyalella Exposures

Day	West	LV-01	LV-02	SL-02	SIT-03
	Bearskin				
0	<	2.0	3.7	3.6	2.1
10	< 1	<1	1.3	<1.	<1

Page 30 of 86

Table 15. Overlying Water Ammonia Values (mg/L) for ECT Sediments During Ten-Day Chironomus Exposures

Day	West	LV-01	LV-02	SL-02	SL-03
0	Dogram.	2.0	3.7	3.6	2.1
10	<1	1.1	1	<1	\ \ \

Table 16. C. tentans Survival and Growth and H. azteca Survival

Site ID # West Bearskin

Mean Ashed Weight (mg)	0.69	0.68	0.85	0.77	0.86	0.93	0.91	0.89	0.82	0.10
Mean Dried Veight (mg)	0.94	0.92	1.14	1.04	1.11	1.23	1.19	1.18	1.09	0.12
Ashed Org Wt. (g)	0.00246	0.00241	0.00289	0.00272	0.00246	0.00268	0.00276	0.00258	Mean	St.Dev
Dried Org Wt. (g)	0.00938	0.00923	0.01138	0.01038	0.01112	0.01106	0.01186	0.01064	1	
Ashed Pan + Ashed Org. Wt. (g)	1.25306	1.26799	1.26084	1.26339	1.26025	1.25721	1.26694	1.25060		
Ashed Pan Weight (g)	1.25060	1.26558	1.25795	1.26067	1.25779	1.25453	1.26418	1.24802		
Dried Pan + Dried Org. Wt. (g)	1.28684	1.27654	1.28340	1.28579	1.28464	1.28742	1.27684	1.27205		
Dried Pan Wt. (g)	1.27746	1.26731	1.27202	1.27541	1.27352	1.27636	1.26498	1.26141		
Weighed	10	10	10	10	10	6	10	6		
#Organisms Dead	0	0	0	0	0	1	0	-		
Alive	10	10	10	10	10	6	10	6	9.6	0.5
Rep	A	В	S	۵	ш	[T.	Ü	H	Mean	St.Dev

Hyalella azteca 10-day Survival

Site ID # West Bearskin

2222	e de la constante de la consta										
sinstin	Dead	0	1	0	0	0	0	1	0		
# Orga	Alive	10	6	10	10	10	10	6	10	8.6	0.5
	Rep	Y	В	၁	Q	Э	ᅜ	ව	Н	Mean	St.Dev

Table 16. C. tentans Survival and Growth and H. azteca Survival

Site ID # LV-01

aga wasi					_	-	-			1
Mean Ashed Weight (mg)	1.30	1.13	0.92	1.28	1.12	1.25	1.29	1.23	1.19	0.13
Mean Dried Veight (mg)	1.64	1.41	1.13	1.61	1.38	1.61	1.56	1.53	1.48	0.17
Ashed Org	0.00302	0.00252	0.00206	0.00199	0.00262	0.00324	0.00220	0.00304	Mean	St.Dev
Dried Org Wt (g)	0.01477	0.01269	0.01128	0.00968	0.01380	0.01445	0.01250	0.01531		
Ashed Pan + Ashed Org. Wt. (g)	1.25800	1.27035	1.27007	1.26707	1.24688	1.26214	1.29943	1.26325		
Ashed Pan Weight (g)	1.25498	1.26783	1.26801	1.26508	1.24426	1.25890	1.29723	1.26021		
Dried Pan +	1.28789	1.28618	1.26955	1.26401	1.28048	1.28061	1.26307	1.29008		
Dried Pan Wt. (g)	1.27312	1.27349	1.25827	1.25433	1.26668	1.26616	1.25057	1.27477		
Weighed	6	6	10	9	10	6	8	10		
#Organisms Dead	1	_	0	4	0	1	2	0		
Alive	6	6	10	9	10	6	8	10	8.9	1.4
E A	¥	В	O	Ω	Щ	Ľ	ß	H	Mean	St.Dev

Hyalella azteca 10-day Survival

Site ID # LV-01

amisens	Dead	2	0	1	0	0	0	0	2		
# Org	Alive	8	10	6	10	10	10	10	8	9.4	6.0
	Rep	Ą	В	ပ	D	Ħ	ഥ	Ð	Н	Mean	St.Dev

Table 16. C. tentans Survival and Growth and H. azteca Survival

Site ID # LV-02

ľ	g (ag								•			
	Mean Asher Weight (mg	1.45	1.05	1.04	1.15	1.31	1.15	1.16	0.59	1.11	0.25	
	Mean Dried Weight (mg)	1.98	1.37	1.38	1.59	1.82	1.63	1.60	0.68	1.51	0.39	
	Ashed Org	0.00423	0.00320	0.00343	0.00393	0.00463	0.00434	0.00438	0.00043	Mean	St.Dev	
	Dried Org Wt. (g)	0.01584	0.01374	0.01375	0.01434	0.01640	0.01463	0.01596	0.00340			•
	Ashed Org. Wt (g)	1.27269	1.25916	1.26250	1.25880	1.27383	1.29714	1.25191	1.26096			
	Ashed Pan Werght (g)	1.26846	1.25596	1.25907	1.25487	1.26920	1.29280	1.24753	1.26053			
	Dried Pan +	1.29054	1.26784	1.27435	1.28453	1.28214	1.26958	1.29235	1.26219			
	Dried Pan Wr (a) Dri	1.27470	1.25410	1.26060	1.27019	1.26574	1.25495	1.27639	1.25879			
	Weighed	8	10	10	6	6	6	10	5			
	# Organisms	2	0	0	1	1	1	0	5			_
40	47.I.V	×	10	10	6	6	6	10	5	8.8	1.7	
US 10 T L V OF	£	A	В	Ü	Ω	Ш	ĹĽ	ľ	H	Mean	St.Dev	

Hyalella azteca 10-day Survival

Site ID # LV-02

AWW.		-								1	
suustut	Dead	1	3	1	0	0	1	0	0		
1840#	Alive	6	7	6	10	10	6	10	10	9.3	1.0
	Rep	Ą	В	၁	D	ы	F	ß	Н	Mean	St.Dev

Table 16. C. tentans Survival and Growth and H. azteca Survival

Chironomus tentans 10-day Survival and Growth Data

Site ID # SL-02

, T								Γ-	Τ	Т	_	
Mean Ashe	Weight (mg	1.20	0.85	1.19	0.84	0.94	1.05	1.13	1.12	1.12	1.04	0.15
Mean Dried	Weight (mg)	1.84	1.49	1.91	1.31	1.48	1.56	1.68	1 63	1.02	1.64	0.21
Ashed Orb Mean Dr	Wt (g)	0.00642	0.00638	0.00724	0.00472	0.00485	0.00506	0.00554	20000	0.00/02	Mean	St.Dev
Direct Oro	Wt (g)	0.01836	0.01487	0.01913	0.01305	0.01329	0.01559	0.01677	01010	0.01819		
A Shed ben I	Ashed Org. Wt. (g)	1.26642	1.26308	1.25545	1.26313	1.26798	1.27068	1 28636	1.20030	1.26400		
**************************************	Weight (g)	1.26000	1.25670	1.24821	1.25841	1.26313	1 26562	1 28082	1.20002	1.25698		
	Dried Org. Wt. (g)	1.28093	1.29074	1.28997	1.28523	1.28200	1 27701	1 27702	1.7/403	1.29099		
	Dried Pan Wt. (g)	1.26257	1.27587	1.27084	1.27218	1 26871	1 261/12	1,0500	1.23800	1.27280		
	Weighed	10	10	10	10	ò	5	10	PI	10		
	# Organisms	0	, c	C		, -	4 6	o	0	0		
02	4	10	10	10		21 0	1	O.I.	10	10	66	9.6
Site ID # SL-UZ	í P	Δ	i a	ء د		٦	4 5	ı,	Ð	н	Mean	St Dev

Hyalella azteca 10-day Survival

Site ID # SL-02

ns	Dead	0	1	1	2	0	1	0	0		
# Organis	Alive	10	6	6	8	10	6	10	10	9.4	0.7
	Rep	Ą	В	C	Ω	田	Ħ	Ð	Н	Mean	St.Dev

Table 16. C. tentans Survival and Growth and H. azteca Survival

Site ID # SL-03

dean Ashed Veight (mg)	1.08	1.15	1.14	1.21	1.13	1.35	1.17	0.98	1.15	0.11
Mean Dried N Weight (mg) W	2.15	2.19	2.03	2.16	2.74	2.47	2.26	1.79	2.22	0.28
Ashed Org Wt. (g)	0.01073	0.01038	0.00885	0.00855	0.01453	0.00894	0.00985	0.00730	Mean	St.Dev
Dried Org Wt. (g)	0.02152	0.02195	0.02032	0.01946	0.02463	0.01978	0.02037	0.01611		
Ashed Pan + Ashed Org. Wt. (g)	1.26840	1.27915	1.26519	1.26214	1.27607	1.26678	1.26684	1.26215		
Ashed Pan Weight (g)	1.25767	1.26877	1.25634	1.25359	1.26154	1.25784	1.25699	1.25485		
Dried Org. Wt. (g)	1.29705	1.28002	1.28261	1.28497	1.28759	1.27870	1.27924	1.27109		
Dried Pan Wt. (g)	1.27553	1.25807	1.26229	1.26551	1.26296	1.25892	1.25887	1.25498		
Weighed	10	10	10	6	6	8	6	6		
# Organisms Dead	0	0	0	1	-	2	1			
Alive	10	10	10	6	6	8	6	6	9.3	0.7
Reb	¥	В	S	Ω	山	Ħ	ŋ	H	Mean	St.Dev

Hyalella azteca 10-day Survival

Site ID # SL-03

	ınisms	Dead	1	2	0	0	0	0	0	1		
20	# Org	Alive	6	8	10	10	10	10	10	6	9.5	0.8
בי ביוס		Rep	A	В	ర	D	E	F	ß	Н	Mean	St.Dev

Table 17. Precision of Chironomus tentans 96 Hour NaCl Reference Toxicant Testing

DATE	LC 50 (g/l) a	Mean ^b	S _x ^c	CV (%) ^d
July, 2001	7.08	-	-	-
August, 2001	8.00	7.54	0.65	8.6
September, 2001	8.57	7.88	0.75	9.5
October, 2001	6.96	7.65	0.77	10.0
March, 2002	7.46	7.61	0.67	8.8
May, 2002	7.46	7.59	0.60	8.0
June, 2002	8.00	7.65	0.57	7.5
July, 2002	6.50	7.50	0.67	8.9
August, 2002	6.50	7.39	0.71	9.6
September, 2002	7.46	7.40	0.67	9.0
October, 2002	5.66	7.24	0.82	11.4
November, 2002	5.66	7.11	0.91	12.8
December, 2002	6.96	7.10	0.87	12.3
December, 2003	7.46	7.12	0.84	11.8
January, 2003	6.50	7.08	0.83	11.7
April, 2003	6.96	7.07	0.80	11.3
July, 2003	7.46	7.10	0.78	11.0
August, 2003	5.66	7.02	0.83	11.8
April, 2004	9.85	7.17	1.04	14.4
April, 2004	5.66	7.09	1.06	15.0

^a Concentration (g/l) of NaCl which causes 50% lethality.

^b Running mean.

^c Standard deviation.

^d Coefficient of variation.

Table 18. Precision of Hyalella azteca 96 Hour NaCl Reference Toxicant Testing

DATE	LC ₅₀ (g/l) ^a	Mean ^b	S _x ^c	CV (%) ^d
August, 2001	2.83	-	-	-
September, 2001	2.46	2.65	0.26	9.9
October, 2001	2.46	2.58	0.21	8.3
November, 2001	2.64	2.60	0.18	6.8
December, 2001	3.25	2.73	0.33	12.1
March, 2002	3.73	2.90	0.50	17.4
May, 2002	3.01	2.91	0.46	15.9
June, 2002	3.25	2.95	0.44	15.1
July, 2002	2.83	2.94	0.42	14.2
August, 2002	2.83	2.93	0.40	13.5
September, 2002	2.46	2.89	0.40	13.9
October, 2002	2.83	2.88	0.38	13.3
December, 2002	2.29	2.84	0.40	14.2
December, 2003	2.46	2.81	0.40	14.2
January, 2003	2.46	2.79	0.40	14.2
April, 2003	2.83	2.79	0.38	13.7
July, 2003	2.14	2.75	0.40	14.6
August, 2003	2.83	2.76	0.39	14.2
January, 2004	2.14	2.72	0.40	14.9
April, 2004	2.83	2.73	0.39	14.5

^a Concentration (g/l) of NaCl which causes 50% lethality.

Page 38 of 86

^bRunning mean.

^c Standard deviation.

^d Coefficient of variation.

APPENDIX A

Chain of Custody Form

Page 37 of 86

719 Griswold St., Suite 520 Detroit, MI 48226 (313) 963-6600 (313) 963-1707 - Fax CHAIN-OF-CUSTODY RECORD

Environmental Consulting & Technology, Inc.

REMARKS Report and Original COC to: Date Results Required: ANALYSES REQUESTED PRESCRIVATIVES Mark Mikucil 21.04 NORMAL LABORATORY: ATTN: 1510 TIME TWE 3/31/64 DATE SIZE CONTAINERS Š Sedment MATRIX RECEIVED AT LAB BY: RECEIVED BY: RECEIVED BY John Kennedy, M. McBahay, J. Edwards 1640 SAMPLE IDENTIFICATION 3/30/04 DATE Mondaring St. 03 PROJECT NUMBER (INCLUDE TASK NUMBER) 707 SLOZ 10/7 Macinby County 030397-0200 8440 × PROJECT NAME/LOCATION COMP. SAMOLER(S) NAME(S) 13% 12/13/63 1250 RELINOUISHED BY JAK. 122/4/1330 とよ 3621/20/21/1235 12/13/55 DATE

APPENDIX B

Raw Data Sheets

Page 41 of 86.

ECT

Hyalella/Chironomus Toxicity Test

Study I.D. # 5010-215

Init. 4/2/04

Page 42 of 86

Exposure System Observations/Activities Sheet for Sediments Initiated 4/2/04

	Observations	STATESTA LONDED.		ORGANISMS LOADED, FED		ALL SITES LOOK GOOD, FED		400Ks 6000. Path		Looks Good. Faul	Goles Good. Fed		1006; 400 d. Fel	wolks Good tend.	Looks gout . Fed		wote about - termstial loss to Muid OT & for 33 hors,
	Initials		VIA		ه ک	4	5	d t	1	7	ž	Z Z	NIL	N	00	82	7
	Observations/Activities	Head Flow (ml/min):	3/6	Head Flow (ml/min):	320	Head Flow (ml/min):	370	Head Flow (ml/min):	ع/ج ا	Head Flow (ml/min):							
Day of	Test		7		0		1		2	r	4		, ,	7	∞	6	10
	Date		h0/1/h	11/2/12	4/2/04	7.7	1/3/64	2/11/20	10/4/1	415/64	4/6/04	1/2-fo4	118/01	Holan	4/01/2	40/0/4	4/12/64

Table 2. Overlying Water Temperature Values (oC) for ECT
Sediments During 10-Day Hyalella Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	22.6	227	72.8	22.4	22:7
1	22.8	22,9	23 0	23.0	22-8
2	22.7	22.7	22.7	23-6	22.9
3	22.1	22.1	22.0	22.1	22.1
4	23.0	23.0	23.0	23.0	23.0
5	23.2	23.2	23.1	23.0	23.2
6	23.0	23.1	23.6	232	23,2
7	22.9	22.8	22.8	228	229
8	22-8	23.0	23.0	22-9	22-9
9	23. O	23.0	23.0	23.1	23.1
10	23. í	22 <i>.</i> 9	23.1	22.9	23.1

Page 44 0186

Table 3. Overlying Water Temperature Values (oC) for ECT
Sediments During 10-Day Chironomus Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	22.6	22.7	22-8	22.6	22.7
1	22.8	22.9	23-0	23.0	228
2	22.7	72.7	22.7	23.0	22.9
3	22.1	22.1	22.0	. 22.1	22.1
4	23.0	23,0	23.0	23.0	23.0
5	23.2	23.2	23.1	23.0	23.2
6	23.0	23.1	23.0	23,2	23, 2
7	229	22.8	22.8	22.8	22.7
8	22.8	23.0	23.0	22-9	22.9
9	23. O	23.0	33.0	23.1	23.1
10	23.1	23.2	23.1	23.2	23.0

Page 45 or 86

Table 4. Overlying Water D.O.Values (mg/L) for ECT

Sediments During 10-Day Hyalella Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	8.2	8.4	8.4	8.4	% , 3
1	le le	4.5	4.9	7.0	7.2
2	7.5	Le. 7	4.7	4.9	7.0
3	8.1	6.9	8.0	8.1	8.0
4	8.1	7.7	7.7	8.2	8.2
5	7.5	6.2	4.8	7-4	7.4
6	7.9	6.9	7.3	7.2	7.7
7	8.1	6.6	7.1	7.4	7.5
8	7.5	7.0	7.0	71	7-2
9	7.8	8.0	7.7	7.8	7.8
10	7.3	7.8	7.4	7.3	7.6

Suspend feeding if DO < 2.5 mg/L

Page 46 of 86

Table 5. Overlying Water D.O. Values (mg/L) for ECT

Sediments During 10-Day Chironomus Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	8, 2	8-4	8.4	8.4	8:3
1	7,0	6.1	5.8	5.9	4.5
2	4.0	5,2	5.4	5.7	4.0
3	7.4	7.7	7.7	6.7	6,6
4	6.8	6.6	6.6	6.9	6.5
5	7.5	4,0	4.0	4.8	6.3
6	8.0	6.5	5,7	5.7	5.2
7	7.9	6.6	6.7	6.7	7.5
8	8.0	6.7	6.7	6.6	6.8
9	8.8	8.0	8,0	7.8	7.8
10	7.8	7.6	7.5	7.8	7-1

Suspend feeding if DO < 2.5 mg/L

Page 17 01 86

Table 6. Overlying Water pH Values for ECT Sediments

During 10-Day *Hyalella* Exposures

Day	West	LV01	LV02	SL02	SL03
0	Bearskin 7-53	7.72	7.77	7.62	7.96
10	7.58	7.69	7.73	7.41	7.63

Table 7. Overlying Water pH Values for ECT Sediments

During 10-Day *Chironomus* Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	2.53	7.72	7-7-7	7.62	7.96
10	7.68	7.75	7.68	7-61	7.81

Page 49 of 86

Table 8. Overlying Water Cond. Values (umhos/cm) for ECT
Sediments During 10-Day Hyalella Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	126	2/2	238	402	2/8
10	129	232	əs4	236	215

Paga 50 oi 86

Table 9. Overlying Water Cond. Values (umhos/cm) for ECT
Sediments During 10-Day Chironomus Exposures

Day	West Bearskin	LV01	LV02	SL02	SL03
0	126	212	238	402	218
10	130	236	248	231	220

Table 10. Overlying Water Alkalinity Values (mg/L) for ECT

Sediments During 10-Day *Hyalella* Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	18	108	164	188	130
10	28	110	150	192	100

Table 11. Overlying Water Alkalinity Values (mg/L) for ECT
Sediments During 10-Day *Chironomus* Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin	102	i, (1	188	139
0	81 18	120	152	166	118 Row 4/1
10	42	112	160	168	120

Page 53 of 86

Table 12. Overlying Water Hardness Values (mg/L) for ECT

Sediments During 10-Day *Hyalella* Exposures

Day	West	LV01	LV02	SL02	SL03
0	Bearskin 84	120	152	164	//8
10	42	114	160	146	128

Table 13. Overlying Water Hardness Values (mg/L) for ECT
Sediments During 10-Day *Chironomus* Exposures

Day	West Bearskin	LV01	LV02	SL02	SL03
0	84	120	152	160	48
10	40	120	158	150	130

Page 55 of 86

Table 14. Overlying Water Ammonia Values (mg/L) for ECT

Sediments During 10-Day *Hyalella* Exposures

Day	West	LV01	LV02	SL02	SL03
	Bearskin				
0	∠1	2.0	3.7	3.6	2۱
10	41	Z 1	1.3	41	41

Table 15. Overlying Water Ammonia Values (mg/L) for ECT
Sediments During 10-Day *Chironomus* Exposures

Day	West Bearskin	LV01	LV02	SL02	SL03
0	L j	2.0	3.7	3.4	2.1
10	41	1.1	1.2	< 1	21

3	Site ID # W	est Bears!	kin				
		#	Organisn	ıs		Pan +	Pan +
l	Rep	Alive	Dead	Weighed	Ashed Pan Wt. (g)	Dried Org. Wt. (g)	Ashed Org. Wt. (g)
	A	<i>i</i> 0	Ð	16	1.27746	1.28684	
	В	10	٥	16	1.26731	1.27654	
	С	<i>(</i> 0	0	10	1,27202	1.28340	
İ	D	10	Ó	10	127541	1.28579	
	E	10	0	10	1,27352	1.28464	
	F .	9	,	9	1.27636	1.28742	
	G	10	0	10	126498	1.27484	
	H	9	1	a	1.26/4/	1.27205	

Hyalella azteca 10-day Survival

Site ID # West Bearskin					
	# Organisms				
Rep	Alive	Dead			
A	10	ے			
В	9	i			
С	iO	Λ			
D	10	O			
Е	10	٥			
F	10	٥			
G	9	i			
н	10	O			

Site ID #	LV01					
	#	Organism	ıs		Pan +	Pan +
Rep	Alive	Dead	Weighed	Ashed Pan Wt. (g)	Dried Org. Wt. (g)	Ashed Org. Wt. (g)
A	9		9	1.27312	1.28789	
В	9	,	9	1.27349	1.28418	
С	10	0	10	1,25827	1.26955	
D	6	4	L		1.24401	
E	10	0	10		1.28048	
F	9	1	9	1,26616	1.28061	
G	8	ス	0	1,25057	1.26307	
н	10	0	10	1,27477	1-28 4140	,

1.29008

Hyalella azteca 10-day Survival

Site ID # LV01			
	# Organisms		
Rep	Alive	Dead	
A	8	ړ	
В	Ю	0	
·c	9	1	
D	10	0	
E	10	Ö	
F	jo	Q	
G	10	0	
Н	8	2	

	Site ID #	LV02					
		#	Organism	ns		Pan +	Pan +
	Rep	Alive	Dead	Weighed	Ashed Pan Wt. (g)	Dried Org. Wt. (g)	Ashed Org. Wt. (g)
	A	8	2	8	1.27474	1.29054	
	В	10	0	10	1.254/0	1.24784	
	С	10	0	10	1.26060	1.27435	
	D	9	(9	1,27019	1.28453	
	E	970	10	10	1,26574	1.28214	
	F	9	1	9	1,25475	1.24958	
	G	10	0	10	1,27639	1,29235	
4	н	5	5	5	1.25879	1.26291	

large vegetation present that my have disturbed sedercet/water methode.

Hyalella azteca 10-day Survival

Site ID # LV02			
	# Organisms		
Rep	Alive	Dead	
A	9	1	
В	7	3	
C	9	. 1	
D	10	0	
E	10	Q	
F	9	1	
G	10	0	
н	(0)	0	

Page 60 oi 86

Site ID #	SL02					
	#	Organism	เร		Pan +	Pan +
Rep	Alive	Dead	Weighed	Ashed Pan Wt. (g)	Dried Org. Wt. (g)	Ashed Org. Wt. (g)
A	10	0	10	1,26257	1.28693	
В	10	0	10	1.27587	1.29074	
С	10	0	10	1,27084	1.28997	
D	10	0	10	1.27218	1.28523	
Е	9	l	1	1.26871	1.28200	
F	10	0	10	1.26142	1.27761	
G	W	0	16	1.25806	1.27483	
Н	10	0	0\	1,27280	1.29099	

Hyalella azteca 10-day Survival

Site ID # SL02			
	# Organisms		
Rep	Alive	Dead	
A	10	O	
В	9	1	
С	9	1	
מ	8	2	
Ė	Ю	ر ٥	
F	9	ı	
G	16	6	
Н	10	6	

		Organisn	ns I		Pan +	Pan +
Rep	Alive	Dead	Weighed	Ashed Pan Wt. (g)	Dried Org. Wt. (g)	Ashed Org. Wt. (g)
Α	10	0	10	1,27553	1.29705	
В	10	0	19	1. 2580 7	1.28002	
С	10	0	10	1.26229	1.28261	
D	9	1	9	1.26551	1.28497	
E	9	. 1	9	1,26296	1.28759	
F	8	2	8	1.25892	1.27870	
G .	9	1	9	1.25887	1.27924	
Н	9	1	9	125498	1, 27109	

Hyalella azteca 10-day Survival

Site ID # SL03			
	# Org	anisms	
Rep	Alive	Dead	
A	9	1	
В	8	7	
С	10	0	
D	10	0	
E	10	0	
F	N	^	
G	10	0	
	9	,	

20062 of 86.

7

WBS

ASHED PAN WEIGHT +

	ASHED PAN WEIGHT	ASHED CT
A_	1,25060	1.25304
В	1.14558	1.26799
С	1,25795	1.26084
D	1.26067	1.26339
E	1.25779	1.26025
F	1.25453	1,25721
G	1.26418	1.26694
Н	1,24802	1,25060

LV01

ASHED PAN WEIGHT +

	ASHED PAN WEIGHT	ASHED CT
Α	1.25498	1, 25800
B C	1.26783	1. 27035
С	1.26801	1.27007
D E	1.26508	1.26707
Ε	1.24426	1.24688
F	1.25890	1.26214
G	1,29723	1.29943
H	1.26021	1.26325

LV02

ASHED PAN WEIGHT +

	ASHED PAN WEIGHT	ASHED CT
Α	1.26846	1. 27269
В	1.25596	1.25916
С	1.25907	1.26250
D E	1.25487	1.25880
E	1,26920	1.27383
F	1.292.80	1.29714
G	1,24753	1.25191
H	1.26053	1.26096

SLO2

ASHED PAN WEIGHT +

		ASHED CT
Α	1,26000	1.26642
В	1,2567-0	1. 26308
С	1.24821	1. 25545
D	+, 2548 1.25841	1.26313
E	1.24313	1.26798
F	1.26562	1.27068
G H	1.28082	1.28636
H	1,25698	1,26400

SL03

ASHED PAN WEIGHT +

	ASHED PAN WEIGHT	ASHED CT
A B	1.25767	1.24840
В	1.26877	1.2 7915
С	1.25634	1.26519
D	125359	1.26214
E	1.26154	1.27607
F	1.25784	1.26678
G	1.25699	1.26684
Н	1.25485	1-26215

Page 63 of 86

APPENDIX C

Statistical Analyses

64 o. 86

Title: ECT Hyalella Survival

File: ECTHA Transform: ARC SINE(SQUARE ROOT(Y))

Shapiro - Wilk's Test for Normality

D = 0.5212W = 0.8433

Critical W = 0.9190 (alpha = 0.01 , N = 40) W = 0.9400 (alpha = 0.05 , N = 40)

Data FAIL normality test (alpha = 0.01). Try another transformation.

The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is. Warning

Title: ECT Hyalella Survival

File:

ECTHA

Transform:

ARC SINE (SQUARE ROOT (Y))

Levene's Test for Homogeneity of Variance

ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	0.0252	0.0063	0.6313
Within (Error)	35	0.3498	0.0100	
Total	39	0.3750		
			n-value.	

(p-value = 0.6435)

Critical F = 3.9082= 3.9082 (alpha = 0.01, df = 4,35) = 2.6415 (alpha = 0.05, df = 4,35)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.01)

Title: ECT Hyalella Survival File: ECTHA Transform: ARC SINE(SQUARE ROOT(Y))

Steel's Many-One Rank Test - Ho: Control<Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	RANK SUM	CRIT. VALUE	SIG DF 0.05
1 2 3 4 5	West Bearskin LV-01 LV-02 SL-02 SL-03	1.3713 1.3154 1.2983 1.3128 1.3332	62.00 59.00 59.00 63.00	47.00 47.00 47.00 47.00	8.00 8.00 8.00 8.00

Critical values are 1 tailed (k = 4)

Title: ECT Chironomus Survival

File: ECTCT Transform: ARC SINE(SQUARE ROOT(Y))

Shapiro - Wilk's Test for Normality

D 0 600F

D = 0.6925W = 0.8704

Critical W = 0.9190 (alpha = 0.01 , N = 40) W = 0.9400 (alpha = 0.05 , N = 40)

Data FAIL normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Kon 68 . 86

Title: ECT Chironomus Survival

File:

ECTCT

Transform: ARC SINE(SQUARE ROOT(Y))

Levene's Test for Homogeneity of Variance

ANOVA Table

-				
SOURCE	DF	SS	MS	F
Between	4	0.0822	0.0206	1.8628
Within (Error)	35	0.3863	0.0110	
Total	39	0.4686		
			n-value)	= 0.1390

(p-value = 0.1390)

Critical F = 3.9082 (alpha = 0.01, df = 4.35) = 2.6415 (alpha = 0.05, df = 4.35)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.01)

Title: ECT Chironomus Survival

File: ECTCT Transform: ARC SINE(SQUARE ROOT(Y))

Steel's Many-One Rank Test - Ho: Control<Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	RANK SUM	CRIT. VALUE	DF	SIG 0.05
1 2 3 4 5	West Bearskin LV-01 LV-02 SL-02 SL-03	1.3713 1.2471 1.2345 1.3916 1.2924	54.00 54.00 72.00 55.00	47.00 47.00 47.00 47.00	8.00 8.00 8.00 8.00	

Critical values are 1 tailed (k = 4)

APPENDIX D

Post-Carbon Water Analysis

Page Hot 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

Lab Sample No: 105048185 Client Sample ID: MILLIPORE Project Sample Number: 1080640-001

Matrix: Water

Date Collected: 11/03/03 11:00

Date Received: 11/04/03 10:00

Parameters	Results	Units	Report Limit	Analyzed	Ву	CAS No.	Qual RegLmt
Metals							
Metals, Trace ICP	Prep/Method:	EPA 3010 /	EPA 6010				
Arsenic	ND	ug/l	10.0	11/13/03 17:54	VAF	7440-38-2	
Barium	ND	ug/l	10.0	11/13/03 17:54	VAF	7440-39-3	
Cadmium	ND	ug/l	1.00	11/13/03 17:54	VAF	7440-43-9	
Chromium	ND	ug/1	10.0	11/13/03 17:54	VAF	7440-47-3	
Lead	ND	ug/l	3.00	11/13/03 17:54	VAF	7439-92-1	
Selenium	ND	ug/1	15.0	11/13/03 17:54	VAF	7782-49-2	
Silver	ND	ug/l	10.0	11/13/03 17:54	VAF	7440-22-4	
Date Digested	11/04/03			11/04/03			
Mercury, CVAAS	Method: EPA 7	7470					
Mercury	ND	ug/1	0.200	11/17/03	TEM	7439-97-6	
Wet Chemistry							
Total Suspended Solids	Method: EPA	160.2					
Total Suspended Solids	ND	mg/l	10.0	11/07/03	JDL		
Cyanide, Total, Water	Method: EPA 3	335.2					
Cyanide	ND	mg/l	0.0100	11/18/03	AGBM	57-12-5	1
Fluoride, Soluble	Method: EPA :	340.2					
Fluoride	ND	mg/l	0.100	11/05/03	LSB	16984-48-8	
Total Organic Carbon	Method: EPA	415.1					
Total Organic Carbon	ND	mg/l	1.0	11/18/03	VAF	7440-44-0	
GC Semivolatiles							
Organochlorine Pesticides	Prep/Method:	EPA 3510 /	EPA 8081				
a 1 pha - BHC	ND	ug/l	0.052	11/12/03 06:29	YU1	319-84-6	
beta-BHC	ND	ug/1	0.052	11/12/03 06:29		319-85-7	
delta-BHC	ND	ug/l	0.052	11/12/03 06:29	YU1	319-86-8	
gamma-BHC (Lindane)	ND	ug/1	0.052	11/12/03 06:29		58-89-9	
Heptachlor	ND	ug/1	0.052	11/12/03 06:29	YU1	76-44-8	
Aldrin	ND	ug/1	0.052	11/12/03 06:29	YU1	309-00-2	
Heptachlor epoxide	ND	ug/l	0.052	11/12/03 06:29	YU1	1024-57-3	
Endosulfan I	ND	ug/l	0.052	11/12/03 06:29			
Dieldrin	ND	ug/1	0.10	11/12/03 06:29			
4,4'-DDE	ND	ug/l	0.10	11/12/03 06:29	YU1	72-55-9	

Date: 11/19/03

Page: 1 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 72 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

Lab Sample No: 105048185 Client Sample ID: MILLIPORE Project Sample Number: 1080640-001

Matrix: Water

Date Collected: 11/03/03 11:00

Date Received: 11/04/03 10:00

Parameters	Results	Units	Report Limit	AnalyzedI	By CAS No.	Qual RegLmt
Endrin	ND	ug/1	0.10	11/12/03 06:29 Y	11 72-20-8	
Endosulfan II	ND	ug/l	0.10	11/12/03 06:29 Y	J1 33213-65-9	
4,4'-DDD	ND	ug/1	0.10	11/12/03 06:29 Y	J1 72-54-8	
Endosulfan sulfate	ND	ug/l	0.10	11/12/03 06:29 Y	J1 1031-07-8	
4.4'-DDT	ND	ug/1	0.10	11/12/03 06:29 Y	J1 50-29 -3	
Methoxychlor	ND	ug/1	0.52	11/12/03 06:29 Y	J1 72-43-5	
Endrin ketone	ND	ug/1	0.10	11/12/03 06:29 Y	J1 53494-70-5	
Endrin aldehyde	ND	ug/1	0.10	11/12/03 06:29 Y	J1 7421-93-4	
Chlordane (Technical)	ND	ug/1	2.1	11/12/03 06:29 Y	J1 57-74-9	
Toxaphene	ND	ug/l	5.2	11/12/03 06:29 Y	J1 8001-35-2	
gamma-Chlordane	ND	ug/1	0.052	11/12/03 06:29 Y	J1 5103-74-2	
alpha-Chlordane	ND	ug/1	0.052	11/12/03 06:29 Y	J1 5103-71-9	
Decachlorobiphenyl (S)	90	x		11/12/03 06:29 Y	J1 2051-24-3	
Tetrachloro·m-xylene (S)	89	*		11/12/03 06:29 Y	J1 877-09-8	
Date Extracted	11/06/03			11/06/03		

Date: 11/19/03

Page: 2 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Client Sample ID: POST-CARBON

Lab Sample No:

105048193

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

Project Sample Number: 1080640-002

Matrix: Water

Date Collected: 11/03/03 11:00

Date Received: 11/04/03 10:00

Parameters	Results	Units	Report Limit	Analyzed	Ву	CAS_No.	Qua1	RegLmt
Metals								
Metals, Trace ICP	Prep/Method:	EPA 3010 /	EPA 6010					
Arsenic	ND	ug/l	10.0	11/13/03 18:00		7440-38-2		
Barium	ND	ug/1	10.0	11/13/03 18:00		7440-39-3		
Cadmium	ND	ug/l	1.00	11/13/03 18:00		7440-43-9		
Chromium	ND	ug/1	10.0	11/13/03 18:00		7440-47-3		
Lead	ND	ug/l	3.00	11/13/03 18:00		7439-92-1		
Selenium	ND	ug/1	15.0	11/13/03 18:00		7782-49-2		
Silver	ND	ug/l	10.0	11/13/03 18:00	VAF	7440-22-4		
Date Digested	11/04/03			11/04/03				
Mercury, CVAAS	Method: EPA	7470						
Mercury	ND	ug/l	0.200	11/17/03	TEM	7439-97-6		
Wet Chemistry								
Total Suspended Solids	Method: EPA	160.2						
Total Suspended Solids	ND	mg/l	10.0	11/07/03	JDL			
Cyanide, Total, Water	Method: EPA	335.2						
Cyanide	ND	mg/l	0.0100	11/18/03	AGBM	57-12-5	1	
Fluoride, Soluble	Method: EPA	340.2						
Fluoride	1.08	mg/l	0.100	11/05/03	LSB	16984-48-8		
Total Organic Carbon	Method: EPA	415.1						
Total Organic Carbon	ND	mg/l	1.0	11/18/03	VAF	7440-44-0		
GC Semivolatiles								
Organochlorine Pesticides	Prep/Method:	EPA 3510 /	EPA 8081					
a1pha-BHC	ND	ug/l	0.052	11/12/03 06:54	YU1	319-84-6		
beta-BHC	ND	ug/l	0.052	11/12/03 06:54		319-85-7		
delta-BHC	ND	ug/l	0.052	11/12/03 06:54				
gamma-BHC (Lindane)	ND	ug/l	0.052	11/12/03 06:54				
Heptachlor	ND	ug/1	0.052	11/12/03 06:54				
Aldrin	ND	ug/l	0.052	11/12/03 06:54		,		
Heptachlor epoxide	ND	ug/l	0.052	11/12/03 06:54				
Endosulfan I	ND	ug/l	0.052	11/12/03 06:54	YU1	959-98-8		
Dieldrin	ND	ug/1	0.10	11/12/03 06:54		60-57-1		
4,4'-DDE	ND	ug/1	0.10	11/12/03 06:54	YU1	72-55-9		

Date: 11/19/03

Page: 3 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 74 of 86

Client Sample ID: POST-CARBON

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

Lab Sample No: 105048193 Project Sample Number: 1080640-002

Date Collected: 11/03/03 11:00

Matrix: Water Date Received: 11/04/03 10:00

Parameters	Results	Units	Report Limit	Analyzed	Ву	CAS No.	Qual RegLmt
Endrin	ND	ug/l	0.10	11/12/03 06:54	YU1	72-20-8	
Endosulfan II	ND	ug/l	0.10	11/12/03 06:54	YU1	33213-65-9	
4,4'-DDD	ND	ug/1	0.10	11/12/03 06:54	YU1	72-54-8	
Endosulfan sulfate	ND	ug/l	0.10	11/12/03 06:54	YU1	1031-07-8	
4.4'-DDT	ND	ug/1	0.10	11/12/03 06:54	YU1	50-29-3	
Methoxychlor	ND	ug/l	0.52	11/12/03 06:54	YU1	72-43-5	
Endrin ketone	ND	ug/l	0.10	11/12/03 06:54	YU1	53494-70-5	
Endrin aldehyde	ND	ug/1	0.10	11/12/03 06:54	YU1	7421-93-4	
Chlordane (Technical)	ND	ug/1	2.1	11/12/03 06:54	YU1	57-74-9	
Toxaphene	ND	ug/l	5.2	11/12/03 06:54	YU1	8001-35-2	
gamma-Chlordane	ND	ug/l	0.052	11/12/03 06:54	YU1	5103-74-2	
alpha-Chlordane	ND	ug/1	0.052	11/12/03 06:54	YU1	5103-71-9	
Decachlorobiphenyl (S)	90	x		11/12/03 06:54	YU1	2051-24-3	
Tetrachloro-m-xylene (S)	86	*		11/12/03 06:54	YU1	877-09-8	
Date Extracted	11/06/03			11/06/03			

Date: 11/19/03

Page: 4 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 75 or 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640

Client Project ID: QA/QC #098

PARAMETER FOOTNOTES

Not detected at or above adjusted reporting limit ND

NC Not Calculable

Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit J

MDL Adjusted Method Detection Limit

Surrogate **(S)**

This sample was prepared within hold time, 11/14. [1]

Date: 11/19/03

Page: 5 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

76 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 99606

Analysis Method: EPA 8081

QC Batch Method: EPA 3510

Analysis Description: Organochlorine Pesticides

Associated Lab Samples:

105048185

105048193

METHOD BLANK: 105059216

Associated Lab Samples:

105048185

105048193

		Blank	Reporting
Parameter	Units	<u>Result</u>	<u>Limit</u> <u>Footnotes</u>
alpha-BHC	ug/l	ND	0.050
beta-BHC	ug/l	ND	0.050
delta-BHC	ug/l	ND	0.050
gamma-BHC (Lindane)	ug/1	ND	0.050
Heptachlor	ug/l	ND	0.050
Aldrin	ug/1	ND	0.050
Heptachlor epoxide	ug/l	ND	0.050
Endosulfan I	ug/l	ND	0.050
Dieldrin	ug/l	ND	0.10
4,4'-DDE	ug/l	ND	0.10
Endrin	ug/l	ND	0.10
Endosulfan II	ug/l	ND	0.10
4,4'-DDD	ug/l	ND	0.10
Endosulfan sulfate	ug/l	ND	0.10
4,4'-DDT	ug/l	ND	0.10
Methoxychlor	ug/l	ND	0.50
Endrin ketone	ug/1	ND	0.10
Endrin aldehyde	ug/l	ND	0.10
Chlordane (Technical)	ug/l	ND	2.0
Toxaphene	ug/l	ND	5.0
gamma-Chlordane	ug/1	ND	0.050
alpha-Chlordane	ug/1	ND	0.050
Decachlorobiphenyl (S)	x	63	
Tetrachloro-m-xylene (S)	x	73	

LABORATORY CONTROL SAMPLE: 105059224

		Spike	LCS	LCS	
Parameter	Units	Conc.	Result	% Rec	<u>Footnotes</u>
alpha-BHC	ua/1	1.500	1.465	98	

Date: 11/19/03

Page: 6 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 77 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

LABORATORY CONTROL SAMPLE: 105059224

·		Spike	LCS	LCS	
Parameter	Units	Conc.	Result	∦ Rec	<u>Footnotes</u>
beta-BHC	ug/1	1.500	1.353	90	
delta-BHC	ug/l	1.500	1.042	70	
gamma-BHC (Lindane)	ug/l	1.500	1.482	99	
Heptachlor	ug/l	1.500	1.413	94	
Aldrin	ug/1	1.500	1.379	92	
Heptachlor epoxide	ug/l	1.500	1.395	93	
Endosulfan I	ug/l	1.500	1.407	94	
Dieldrin	ug/l	1.500	1.487	99	
4,4'-DDE	ug/l	1.500	1.456	97	
Endrin	ug/1	1.500	1.543	103	
Endosulfan II	ug/l	1.500	1.385	92	
4,4'-DDD	ug/1	1.500	1.498	100	
Endosulfan sulfate	ug/1	1.500	1.342	90	
4,4'-DDT	ug/1	1.500	1.471	98	
Methoxychlor	ug/l	1.500	1.665	111	
Endrin ketone	ug/l	1.500	1.441	96	
Endrin aldehyde	ug/l	1.500	1.560	104	
gamma-Chlordane	ug/l	1.500	1.407	94	
alpha-Chlordane	ug/l	1.500	1.414	94	
Decachlorobiphenyl (S)				88	
Tetrachloro-m-xylene (S)				90	

Date: 11/19/03

Page: 7 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 26 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 100092

Analysis Method: EPA 7470

OC Batch Method: EPA 7470

Analysis Description: Mercury, CVAAS

Associated Lab Samples:

105048185

METHOD BLANK: 105094973

Associated Lab Samples:

105048193 105048185

Reporting

Parameter Mercury

Units ug/1

Result Limit

Footnotes

ND

B1 ank

105048193

0.200

LABORATORY CONTROL SAMPLE: 105094981

Spike

LCS

LCS

Parameter Mercury

<u>Units</u> ug/1

Conc. Result 4.984 5.000

∦ Rec Footnotes

100

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 105094999 105095004

105048185

MSD

MS MSD

Spike MS RPD Result Conc. Result Result * Rec * Rec Parameter <u>Units</u>

Footnotes

4.962 4.909 1 0.07700 5.000 Mercury ug/l

SAMPLE DUPLICATE: 105095012

105048193

DUP

<u>Parameter</u> <u>Units</u> Mercury ug/1

Result Result ND ND

RPD NC Footnotes

Date: 11/19/03

Page: 8 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 99461

Analysis Method: EPA 6010

QC Batch Method: EPA 3010

Analysis Description: Metals, Trace ICP

Associated Lab Samples:

105048185

105048193

METHOD BLANK: 105049175

105048185

Associated Lab Samples:

105048193

		B1 ank	Reporting	i
Parameter	<u>Units</u>	<u>Result</u>	<u>Limit</u>	<u>Footnotes</u>
Chromium	ug/1	ND	10.0	
Lead	ug/l	ND	3.00	

LABORATORY CONTROL SAMPLE: 105049183

		Spike	LCS	LCS	
Parameter	<u>Units</u>	Conc.	Result	% Rec	<u>Footnotes</u>
Arsenic	ug/l	1000.00	1039	104	
Barium	ug/l	1000.00	1011	101	
Cadmium	ug/l	1000.00	1028	103	
Chromium	ug/1	1000.00	1037	104	
Lead	ug/l	1000.00	1021	102	
Selenium	ug/l	1000.00	1079	10 8	
Silver	ug/1	1000.00	1045	105	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 105049191 105049209

		105040281	Spike	MS	MSD	MS	MSD		
Parameter	Units	Result	Conc.	Result	Result	X Rec X	<u>Rec</u>	RPD	<u>Footnotes</u>
Arsenic	ug/l	0	1000.00	1101	1134	110	113	3	
Barium	ug/l	60.83	1000.00	1078	1093	102	103	1	
Cadmium	ug/l	0.08998	1000.00	1026	1042	103	104	1	
Chromium	ug/l	0	1000.00	1035	1050	104	105	1	
Lead	ug/l	0	1000.00	968.6	982.5	97	98	1	
Selenium	ug/l	10.01	1000.00	1107	1102	110	109	0	
Silver	ug/l	2.321	1000.00	1099	1119	110	112	2	

Date: 11/19/03

Page: 9 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 80 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

SAMPLE DUPLICATE: 105049217

		105040331	DUP		
Parameter	<u>Units</u>	Result	Result	RPD	<u>Footnotes</u>
Chromium	ug/l	52.70	52.60	0	
Lead	ug/1	96.00	99.70	4	

Date: 11/19/03

Page: 10 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

81 of 86.

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

Analysis Method: EPA 340.2 QC Batch: 99405 Analysis Description: Fluoride, Soluble OC Batch Method: EPA 340.2 105048193 Associated Lab Samples: 105048185 METHOD BLANK: 105045405 105048193 Associated Lab Samples: 105048185 **Blank** Reporting Limit Footnotes **Parameter** Units Result 0.100 ND Fluoride mg/1 LABORATORY CONTROL SAMPLE & LCSD: 105045413 105045421 Spike LCS LCSD L.CS LCSD % Rec % Rec RPD Conc. Result Result Footnotes <u>Parameter</u> Units Fluoride mg/l 1.000 0.9560 0.9630 MATRIX SPIKE: 105045447 MS MS 105043939 Spike **Parameter** Result Conc. Result * Rec Footnotes Units Fluoride 9.630 1.140 10.00 mg/l SAMPLE DUPLICATE: 105045439 DUP

Result

ND

RPD

NC

Footnotes

105043905

Result

ND

<u>Units</u>

mg/1

Date: 11/19/03

Parameter

Fluoride

Page: 11 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

Page 82 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 99638

Analysis Method: EPA 160.2

QC Batch Method: EPA 160.2

Analysis Description: Total Suspended Solids

Associated Lab Samples:

105048185

105048193

METHOD BLANK: 105063358 Associated Lab Samples:

105048185

105048193

Parameter

<u>Parameter</u>

Blank

Reporting

Parameter Total Suspended Solids Units mg/l

Result ND

Limit Footnotes

10.0

LABORATORY CONTROL SAMPLE: 105063366

Spike Conc.

100.00

LCS

Result 95.00

LCS * Rec Footnotes_

95

SAMPLE DUPLICATE: 105063374

Total Suspended Solids

<u>Parameter</u> Total Suspended Solids Units mg/l

<u>Units</u>

mg/1

105037873 Result

DUP Result

RPD **Footnotes**

ND

Units

mg/l

NC

SAMPLE DUPLICATE: 105063689

Total Suspended Solids

105045777

DUP

Result ND

Result ND

RPD Footnotes NC

Date: 11/19/03

Page: 12 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Ban 83 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 99872 QC Batch Method: EPA 335.2 Analysis Method: EPA 335.2

Analysis Description: Cyanide, Total, Water

Associated Lab Samples:

105048185

105048193

METHOD BLANK: 105079099

Associated Lab Samples:

105048185

105048193

Parameter

Cyanide

Units

Reporting

mg/1

Blank Result

Limit Footnotes

ND

0.0100

LABORATORY CONTROL SAMPLE: 105079107

Spike

LCS

LCS

Parameter Cyanide

Units mg/l

Conc._ 0.0800 Result 0.0818 % Rec Footnotes

102

MATRIX SPIKE: 105079131

105069108

Spike

MS

MS

Parameter Cyanide

Units mg/l

Units

mg/1

Units

mg/1

Result 0.2458 Conc. 0.0800 Result

0.2958

62

* Rec Footnotes 1

SAMPLE DUPLICATE: 105079115

Parameter

Cyanide

105047997

DUP

Result

0.02690

Result ND

RPD NC

Footnotes 2,3

Footnotes

SAMPLE DUPLICATE: 105079123

Parameter

Cyanide

105052211

ND

DUP

Result

Result ND

RPD

NC

Date: 11/19/03

Page: 13 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 84 of 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1080640 Client Project ID: QA/QC #098

QC Batch: 99683

Analysis Method: EPA 415.1

QC Batch Method: SM 5310C

Analysis Description: Total Organic Carbon

Associated Lab Samples:

105048185

105048193

METHOD BLANK: 105070759

Associated Lab Samples:

Total Organic Carbon

Total Organic Carbon

105048185

105048193

<u>Parameter</u>

Units

mg/l

Reporting **Blank**

Result

Limit

ND

1.0

LABORATORY CONTROL SAMPLE & LCSD: 105070767 105070775

Parameter

Units

mg/l

LCS Result

4.997

LCSD Result

4.504

LCSD

LCS

<u>Footnotes</u>

% Rec ★ Rec RPD

100

90 10 Footnotes

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 105105639 105105647

105052682 Result

Spike

Conc.

5.000

Spike

MS Result MSD

MSD MS

RPD Footnotes

Total Organic Carbon

Total Organic Carbon

Units mg/l

0.9503

Conc. 2.000 2.835 Result 2.870 % Rec % Rec 96

1

SAMPLE DUPLICATE: 105070809

Parameter

Units mg/l

105048185 Result

ND

DUP Result

ND

RPD NC

Footnotes

Date: 11/19/03

Page: 14 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 85 or 86

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: 612.607.1700 Fax: 612.607.6444

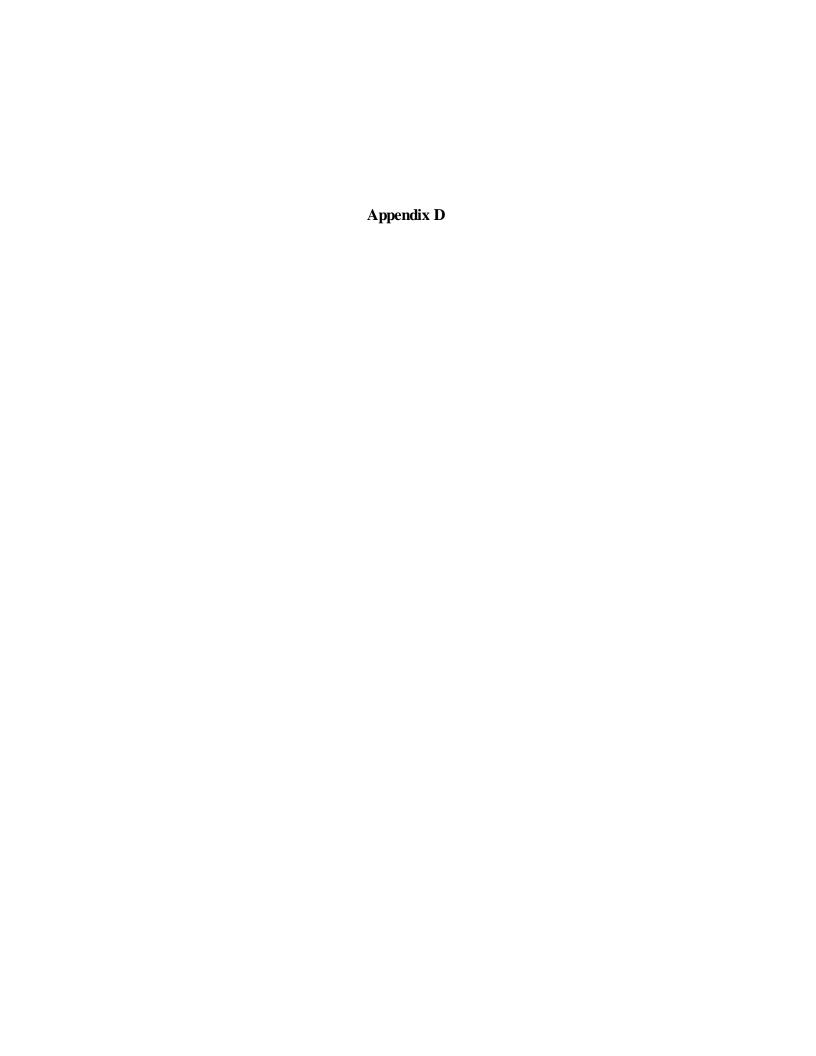
Lab Project Number: 1080640 Client Project ID: QA/QC #098

QUALITY CONTROL DATA PARAMETER FOOTNOTES

Consistent with EPA guidelines, unrounded concentrations are displayed and have been used to calculate % Rec and RPD values.

LCS(D)	Laboratory Control Sample (Duplicate)
MS(D)	Matrix Spike (Duplicate)
DUP	Sample Duplicate
ND	Not detected at or above adjusted reporting limit
NC	Not Calculable
J .	Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit
MDL	Adjusted Method Detection Limit
RPD	Relative Percent Difference
(S)	Surrogate
[1]	The spike recovery was outside of acceptance limits.
[2]	Duplicate analysis is not within control limits.
[3]	This sample was prepared within hold time, 11/14.

Date: 11/19/03


Page: 15 of 15

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 86 0186

Oakland County Lakes sediment field notes

12/13/03

Sylvan Lake

Onsite at 8:15am MMM, AD, JE

30°, sunny, calm, no wind

Ice conditions: couldn't use public boat launch, ice 1.5-2 inches thick. Used launch site

@ Park. Overall ice thickness approximately .5-1.5 inches thick

SL01 3.6-foot water depth-1 11:00 head valve at top of sediment

-2	11:32	head valve at top of sediment
-3	11:45	4ft into sediment
-4	12:10	top of liner to water levelapprox. 1.4 ft into sediment
	11:10	7 ponar grabs to fill bucket

SL02 2.5 foot water depth

-1	12:35	18 inches into sediment
-2	12:37	24 inches into sediment
-3	12:45	24 inches into sediment
	12:50	9 ponar grabs to fill bucket

SL03 2.5 foot water depth

	13:30	5 ponar grabs to fill bucket
-1	13:40	20 inches into sediment
-2	13:50	24 inches into sediment
-3	13:55	24 inches into sediment

12/15/03

Loon Lake

Onsite at 8:30am MMM, JE, JFK

Ice conditions: Boat ramp had 1-1.5 inches of ice, but broke through using poles. Majority of lake was open water. 10-15 feet along the shoreline was frozen.

LL01 2.5-foot water depth

- -1 10:00
- -2 10:03
- -3 10:05
- -4 10:08
 - 10:15 4 ponar grabs to fill bucket

LL02 2.5-foot water depth -1 10:30 -2 10:32 -3 10:37 -4 10:42 10:50 10 ponar grabs to fill bucket LL03 2.5-foot water depth 11:07 -1 -2 11:10 -3 11:15 -4 11:20 6 ponar grabs to fill bucket 11:25

12/22/03

Lake Orion

Onsite at 12:00pm MMM, JE, JFK

40° overcast, wind approx. 8mph

Ice conditions: DNR boat launch was iced over; used village ramp located at the end of Lake Drive. Main portion of the lake was open water, but the bays/coves were ice 2-6 inches thick.

No GI	No GPS in field, marked locations on field map.						
LO01 -1 -2 -3	water too de 13:45 13:50 13:53 13:58	ep @ outlet due to dam, taken NE of outlet, 15' offshore 5 ponar grabs to fill bucket					
LO02 -1 -2 -3	taken on soi 14:40 14:42 14:50 14:55	uth side of inlet cove due to ice and water depth 6 ponar grabs to fill bucket					
LO03 -1 -2 -3 -4	taken on no 15:22 15:40 15:45 16:00 16:15	rth side of inlet cove due to ice and water depth 9 ponar grabs to fill bucket					

01/22/04

Lakeville Lake

Onsite at 10:00am JFK, JE

10 - 20°F partly cloudy, windy

Ice conditions: Lakeville Lake was completely covered with ice; therefore, an airboat was used during the study. No GPS in field, marked locations on field map.

LV01 -1 -2 -3	taken on s 12:35 12:39 12:43	outh side of lake in outlet cove
-5	12:48	7 ponar grabs to fill bucket
LV02 -1 -2 -3 -4	taken on n 13:30 13:33 13:35 13:38 13:41	orth side of lake northern section of inlet cove 5 ponar grabs to fill bucket
LV03 -1 -2 -3 -4	taken sout 13:47 13:50 13:54 13:59 14:02	th of LV02 in inlet cove 6 ponar grabs to fill bucket

Field notes taken during sample compositing.

Site ID	Time	Recovery (in)	Depth (in)	Description
SL01-1	11:00	37	0 – 16	Dark grey med sand w/shells
			16 – 37	Lt grey silt
SL01-2	11:32	46	0 – 27	Dark gray med sand
			27 – 46	Med grey silt w/sand
SL01-3	11:45	35	0 – 15	Dark brown/grey med sand
			15 – 35	Med grey silt
SL01-4	12:10	15	0 – 15	Brown med sand
SL02-1	12:35	14	0 - 14	Dark brown to grey med
SL02-2	12:37	21	0 - 21	sand w/silt and occasional
SL02-3	12:45	15	0 - 15	gravel
SL03-1	13:40	24	0 – 24	Dark brown to grey med/fine
SL03-2	13:50	27	0 - 27	sand
SL03-3	13:55	29	0 – 29	
LL01-1		3	0 – 3	50% Peat, w/ 50% black silt
LL01-2		19	0 – 19	
LL01-3		19	0 – 19	
LL01-4		16	0 – 16	
LL02-1	10:30	18	0 – 18	50% Peat, w/ 50% black silt
LL02-2	10:32	17	0 – 17	,
LL02-3	10:37	17	0 – 17	
LL02-4	10:42	15	0 – 15	
LL03-1	11:07	15	0 – 15	50% Peat, w/ 50% black silt
LL03-2	11:10	14	0 – 14	,
LL03-3	11:15	19	0 – 19	
LL03-4	11:20	18	0 – 18	
LO01-1	13:45	16	0 – 7	Dark gray silty sand – fine to coarse grains – some shells & occasional (trace) slate or shale
			7 – 11	Silty fine sand – shells (some) Dark gray olive
			11 – 16	Lt gray silty fine to med sand
LO01-2	13:50	9	0 – 7	Dark gray silty sand – fine to coarse – trace shells
			7 – 9	Silty fine sand – trace shells dark gray olive
LO01-3	13:53	20	0 – 7	Dark gray silty sand – fine to coarse trace shells – trace gravel – ½" diameter
			7 – 12	Silty fine sand – dark gray olive – trace shells
			12 – 20	Lt gray silty sand fine to med.

	- _Y		·	
LO02-1	14:40	6	0 – 6	Dark gray fine to coarse sand – occasional gravel
LO02-2	14:43	12	0 – 6	Dark gray fine to coarse sand
			6 – 10	Fine to medium sand – dark gray
			10 – 12	Gray silty clay
LO02-3	14:50	13	0 – 2	Dark gray silty fine to coarse sand
			2 – 13	Dark gray silty clay
LO03-1	15:22	< 3	N/A	Sample discarded
LO03-2	15:40	4	0 – 4	Dark gray silty sand – fine to coarse – trace gravel/shells
LO03-3	15:45	13	0 – 3	Dark gray silty sand fine to coarse – trace gravel/shells
			3 – 13	Brown clay with fine/med sand
LO03-4	15:55	12	0 – 4	Dark gray silty sand fine to coarse – trace gravel/shells
			4 – 12	Brown clay with fines
LV01-1		5	0 – 5	Fine to coarse sand – black – shells/leaf debris/roots
LV01-2		12	0 – 12	Fine to coarse sand – trace
LV01-3		14	0 – 14	gravel, leaf debris/roots – lower 4" black, upper 8" green/brown
LV02-1		20	0 – 20	Green/brown mucky
LV02-2		14	0 – 14	sediment with plant debris –
LV02-3		16	0 – 16	peat & shells
LV03-1		16	0 – 16	Green/brown mucky
LV03-2		12	0 – 12	sediment with plant debris –
LV03-3		15	0 – 15	peat & shells
LV03-4		18	0 – 18	